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Preface

These lectures originated in a course given at Harvard in 1961,
Algebraic topology has advanced a long way since that time. Throughout
mathematics, the right kind of problem provides the challenge which
leads to the improvement of technique and the development of new methods.
To a considerable extent, problems about Stiefel manifolds have per-
formed this function in algebraic topology. Thus I felt it might be useful
to bring my lectures up-to-date and give some account of what is now
known.

The basic theory necessary can be found in a number of text
books, such as that of Spanier [132]. At appropriate places I have sum-
marized such additional theory as is needed, with references to the
literature, in the hope that these notes may be accessible to non-
specialists and particularly to graduate students. Many examples are
given and further problems suggested.

The literature on Stiefel manifolds is extensive, as the biblio-
graphy at the end of these notes will indicate. The topics I have chosen
to discuss in detail are mainly those I have worked on myself, but as
well as my own papers I have drawn on those by Adams, Atiyah, Bott
and many others. Although much of the material has been published
before, in some shape or form, there is a fair amount which has not.
The section on further development contains information about work by
Friedlander, Gitler, Mahowald, Milgram, Zvengrowski and others which
is in process of publication; I am very grateful to those concerned for
communicating these results. These notes were read in draft form by
Sutherland, Woodward and Zvengrowski, whose comments have been
most helpful. I would also like to thank Wilson Sutherland and Emery
Thomas for allowing me to quote from joint work, and to thank the

American Mathematical Society, Clarendon Press, London Mathematical

vii



Society and Pergamon Press for permission to draw on previously
published material,

Oxford University Mathematical Institute

Take the topological product s" x 8" of the n-sphere with itself,
Remove the diagonal and the antidiagonal. What is left is the space Xn
of pairs (x, y) such that x # +ty. For what values of n is it possible
to make a continuous deformation of Xn into itself in which each such
pair (x, y) is deformed into the pair (y, x)? It is known that the de-
formation is impossible unless n + 1 is a power of two; and that the
deformation is possible for n=1, 3, 7, 15 and 31; the position for

n= 63, 127, ... is at present unknown.
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1-Introduction:algebra versus
topology

There are three families of Stiefel manifolds, the real, the com-
plex and the quaternionic. Readers of these notes may already be familiar
with the account of their basic properties to be found in standard texts
such as Steenrod [133] and Steenrod-Epstein [134]; a summary is given
in §2 below. In this introduction we shall only be dealing with the real
family, which is undoubtedly the most interesting. Some of the real
Stiefel manifolds have particular topological properties, due to the
existence of certain constructions which are algebraic in origin. Our
aim is to try and understand, from the topological point of view, why
some of them have these properties while others do not.

The notation we use is fairly standard. Thus R™ denotes
euclidean m-space (m =0, 1, ...) with the usual embedding of rR™

+
in R, The vectors v ¢ R™ such that |v| =1 form the unit ball

B™ and those such that |v| =1 form the unit sphere S™ ' The
projective space Pm-1 is obtained from Sm'1 by identifying v with
-v for all v e Sm'l. The group of orthogonal transformations of r™

is denoted by O_. Thus P™ " c P™ and 0_co in the usual

,
way. Unless it is necessary to be more specific the llrz::;,'-slepoint in any
space is denoted by e; orientation conventions are as in [64], and
Lm €T (Sm) denotes the class of the identity self-map,

Followmg Stiefel [136] and many others let v, K where
1 =k =n, denote the manifold of orthonormal k- frames in R". Ele-
ments of Vn,k correspond,km an obx;lous way, to norm-preserving
linear transformations of R™ into R. The orthogonal group 0k acts
on Vn,k by pre-composition, while the orthogonal group 0n acts on
Vn,k by post-composition. The latter action is transitive and enables

v to be identified with the factor space of O by O .., For k< n
n,k n n-k

s

the rotation group can be used instead of the full orthogonal group.

If we pre- or post-compose with a rotation we obtain a self-map



of Vn,k in the homotopy class of the identity. If we pre-compose by a
non-rotation we obtain a self-map of homotopy class A, say; if we post-
compose by a non-rotation we obtain a self-map of homotopy class u,
say. Inthe semigroup of homotopy classes of self-maps of Vn,k these
canonical classes satisfy the relations

2 2 k n

1.1) A =1=p", M=pr, X =u.,

To prove the last of these, represent elements of Vn Kk by matrices

with k columns - the vectors of the k-frame - and n’ rows. The class
X includes the self-maps which change the sign of any column. The class
4 includes the self-maps which change the sign of any row, Since chan-
ging the sign of all the columns has the same effect as changing the sign
of all the rows we obtain )\k = un, as asserted. Note that A =1 if n

is evenand k odd, while u=1 if n is odd and k even. In some
applications it is the class £ = A which is important; note that £ =1

if n and k are both odd.

We can fibre Vn n-1

over V =8 by taking one vector (say
kK n,1

the last) from each k-frame. A cross-section f : Sn-1 - Vn Kk associ-
ates with each point v € Sn'1 an orthonormal k-frame (vl, ’ oy Yy v).
Thus (vl, ceey vk-l) = g(v), say, is an orthonormal (k - 1)-frame; we

refer to g sn-1 - Vn k-1 28 the projection of f, We can always regard
, ProjEerton

(vl, cees vk-l) as a (k - 1)-frame of tangents to Sn'1 at the point v.
Hence a cross-section of Vn,k over Sn-1 is equivalent to an (ortho-
normal) (k - 1)-field on SN-1, i e, a field of orthonormal tangent (k - 1)-
frames. Any such (k - 1)-field spans a field of tangent (k - 1)-planes.
Conversely Steenrod has shown, in §27 of [133], that if Sn-1 admits a
field of tangent (k - 1)-planes and 2k =n + 1 then S™ ' admits a

(k - 1)-field. This does not mean, however, that every field of tangent

(k - 1)-planes can be spanned by a (k - 1)-field (see [62]).

For what values of n and k does V admit a cross-section,

over Sn-l? Take k =2, for example, We zéléd to find a self-map g
of Sn-1 such that g(v) is orthogonal to v, for all v ESn_l. When n
is even, say n = 2m, we can regard v as a complex m-vector, rather
than a real 2m-vector, and define g through multiplication by i. In

terms of coordinates, if v = (xo, X _1) then

17 7 ¥om-2' *om



glv) = (-xl, Kogp eees “Xor 1 x2m_2). Conversely, suppose that g

exists, with g(v) orthogonal to v. Then
ht(v) =v cos nt + g(v)sin at 0=t=1)

defines a homotopy between the identity on Sn-1 and the antipodal map.
Since the degree of the latter is -1D" it follows at once that n is

even. Thus Vn admits a cross-section if and only if n is even.

2
’
Given k, we can construct cross-sections of Vn K for suitable
’
values of n as follows, Consider the Clifford algebra Cm(m =0,1,...)
generated by an anticommuting set of elements (el, ceey em) such that
e2 = ... = e2 = -1.

Thus C0 =R, the real numbers; C1 = C, the complex numbers; and
C2 = H, the quaternions. The next five Clifford algebras are easily

shown to be
H ® H, H(2), C(4), R(8), R(8) ® R(8),

where A(q), for any algebra A and positive integer q, denotes the qth
order matrix algebra over A. Moreover (see [9], for example) the
matrix algebra C_ (16) of order 16 over C is isomorphic to C .

m m m+8
Thus all the Clifford algebras can be expressed in terms of matrix
algebras over R, C or H,

Let o(k) denote the number of integers s inthe range 0< s< k
suchthat s =0, 1, 2 or 4 mod 8. Clearly R" can be represented as a
Ck-l
representation can be orthogonalized, in the usual way, so that the

-module whenever n = 0 mod a, where a = 20(k). Any such

generators €, .- correspond to orthogonal transformations,

" %kl
and then a cross-section f : S* ' —» V, i is givenby
’

— n-1
f(v) = (el.v, cees € 1Y, v) (ves ).

The existence of these Clifford cross-sections was noted by Eckmann [38],

with reference to the algebraic results of Hurwitz [60] and Radon [118].

We give an example, due to Zvengrowski, of a Clifford cross-section of



V16 (the first eight column vectors are tangent to S'° at the points

glven by the last).

X -X -x -X -X -X -x -X X

8 7 6 5 4 3 2 1 0
-X X -X -X X -X X X X

9 6 7 4 5 2 3 0 1
-X -x -X X X X X -X X

10 5 7 6 1 0 3 2
-X -X -X -X X X

11 4 5 6 7 0 1 2 3
-X X -X -x -X X

12 3 2 1 0 7 6 5 4
-x X -X X -X X -X X X

13 2 3 0 1 6 7 4 5
-X -X X -x -X X X X

14 1 0 3 2 5 6 7 6
-X X -X -x X -X X

15 0 1 2 3 4 5 6 7
-X -x - - -X -x -x -X X

0 15 14 13 12 11 10 8
X - - -X X

1 14 15 12 13 10 11 8 9
X -X -X -X X X

2 13 12 15 14 9 8 11 10
X -X -X X -X X

3 12 13 14 15 8 9 10 11
X -x - -x X X

4 11 10 9 8 15 14 13 12
X -X X X X -X X -X X

5 10 11 8 9 14 15 12 13
X X X -X X X -X -X X

6 9 8 11 10 13 12 15 14
X X -x X X -X -X X X

7 8 9 10 11 12 13 14 15

It was Adams [3] who finally proved the long-conjectured

Theorem (1,2). The Stiefel manifold Vik admits a cross-
’

section, over Sn_l, if and only if n=0mod a,.

Sufficiency we have already established, Necessity is trivial for
k=1 andtrue for k = 2, as we have seen. For higher values of k
various results were obtained by G, W. Whitehead [153], N. E. Steenrod
and J. H. C. Whitehead [135], amongst others. To indicate the kind of
methods used in this subject we shall now give the proof of (1. 2) in case
(i) k-1 is a power two or (ii) k # 3 mod 8. In particular we prove
(1. 2) for all k =10. The remaining cases are more difficult and will
be dealt with later.

The Stiefel manifold V n,k contains a subspace P n,k which
plays a major role in what follows To define P n, kK’ f1rst con51der the
real projective (n - 1)-space Pt = Sn—l/ZZ. Any point +x € p™



where x = (xl, ey xn), determines a matrix
||éij-2xixj|| (i=n-k+1,...,nj=1, ..., n.

The k column vectors of this matrix constitute an orthonormal k-frame

n-k-lC n-1

in R”, i.e. an element of Vo ke All points of the subspace P P
’

’

spanned by the first n - k coordinates determine the same element of

. n-1 _n-k-1
Vn X We define Pn " to be the space P /P

by collapsing PD-k-1 to a point and regard P_
’

obtained from P™ 1

g 32 subspace of Vn,k
under the embedding just described. When k = n we interpret P as
the space obtained from Pn-1 by adjoining a point corresponding ?c’) r;he

= Vn,

identity matrix. Notice that Pn In 83 below we shall prove

1 1

’
Proposition (1, 3). The pair (Vn’ K’ Pn, k) is (2n - 2k)-con-

nected.

is

In fact the pair can be given CW-structure so that Vn K

’
obtained from Pn Kk by attaching cells of dimension 2n - 2k + 1 and

higher. Now let ’S denote the suspension functor. A simple geometric

construction, as follows, enables us to prove

Proposition (1. 4). If Vn
has the same homotopy type as P’

has a cross-section then SnP
m,k

k ,
for all m = k.

m+n,k

Let f: Sn-1 -’Vn K be a cross-section and let fv’ for
’

V€ Sn'l, denote the norm-preserving transformation RK =+ R" corres-
ponding to f(v). Consider the map

0 : Bn % Rm—k x Rk - Rm+n-k % Rk

which is given by

otv, v, 2) = (5, 1,0, (- %)

where 0 =t=1 and y eRm_k, zZ eRk. Since O(tv, -y, -z)=-6(tv, y, z),

lotv, y, z)| = |(y, z)|, it follows that 6 induces a map

(Bn x Pm-l’ Bn x Pm—k—l U Sn-l % Pm—l) - (Pm+n-1’ Pm+n—k—1)’

and hence a map



¢ : (Bn/sn-l) ~ (Pm-l/Pm-k-l) - (Pm+n-1/Pm+n-k-1)
where ~ denotes the smash product. If f is a Clifford cross-section
then ¢ is a homeomorphism. In the general case it can easily be shown
(see 86) that ¢ induces an isomorphism in homology and hence is a
homotopy equivalence, by the theorem of J. H. C., Whitehead [159].

Let us now see what information can be extracted from (1. 4) by

using the Steenrod squares in mod 2 cohomology. Recall that
H*(P"™) = Z_[a] mod 2",

where a generates Hl(Pn_l), and that
‘g4
la] = (::-:.)a'l ]1
by the Cartan product formula. From the cohomology exact sequence of
the cofibration

Pn-k-l - Pn-l -P
n,k

we see that ﬁr(Pn k)’ for n- k =r < n, is generated by an element
ar, where ’
i _d
(1.5) Sq 2, = (i)ai+j
for j=Zn-k and i+ j< n. With (1. 4) in mind we prove

Proposition (1. 6). Given n and k suppose that S "p m, k and

> — s
Pm+n,k have the same homotgﬁy1 type for all m > k. If k=2 +1,

for some s, then n =0 mod 2

Choose m > k sothat m =k mod 2°1%. Then Squm'k(Pm .
’

by (1.5), forall i> 0. If n is an odd multiple of 2r, where r < s,
i .m+n-k .
then Sq'H (Ppin i) * O TOF i=2" , hence s'p mk 24 Py

are not of the same homotopy type, since Sq commutes with suspensmn

)=0,

This contradiction establishes (1. 6) and hence, using (1. 4), proves (1. 2)
when k - 1 is a power of two. The original argument of Steenrod and
Whitehead is similar, except that (1. 3) is used instead of (1. 4).

Let us now replace cohomology by the functor ;(R formed from



real vector bundles over a given space. Recall (see [9]) that I~<R(Pn_1
is cyclic of order an with generator a = [L] - 1, where L denotes the
Hopf line bundle over Pn_l, and that L° =L ® L is trivial. For any
integer t the Adams operation wt is defined, as in [3], and has the
property that wt[L] = [Lt]. Hence wta =0 or a according as t is
even or odd. Just as in cohomology the exact sequence of the cofibra-
tion enables KR(P k) to be calculated, Provided n ¥k mod 4 we find
that KR(P k) can be identified with the subgroup of KR(P ) genera-
ted by an_ka when n =k mod 4 t?ere is an extra summand which
complicates matters. Moreover ¥ = 0or 1 according as t is even
or odd.

Let 7(k) denote the number of integers s in the range 0< s<k
suchthat s =0, 1, 3 or 5mod 8. Thus 7(k) =0(k)-1 for k =4+3

mod 8, and 7(k) = (k) otherwise. We prove

Proposition (1, 7). Given n =0 mod 8 and k, suppose that

s"p m, k and P have the same homotopy type for all m > k.,

Then n is d1v151b1e by 27 .

Choose m > k sothat m Zk mod 4 and write o(m)-o(m-k+1)=f.
Recall that yi(s")™ = t°/2

N = K 1
(8" KR(Pm,k) KR(S Pm k)
Let t be odd. Then wt =1 in the domain, as we have seen, and so

¥ = 22 in the codomain. On the other hand ¥ =1 in K (P

Since all these groups are cyclic of order 2f this implies that

t
(S*)nw , for all values of t, where

).

m-+n, k

n/2 _ f

(1.8) t =1 mod 2.

However if n is an odd multiple of 2e'2, for any e = 2, then

n/2 e-1

- e
(1.9) 3™“-1=2%" mod2°

by an elementary calculation as in §8 of [3]. Putting t = 3 we obtain
an immediate contradiction unless n is an even multiple of 2f 2
However m can be chosen, with m #k mod 4, sothat f-1=2 (k),

and so (1. 7) is proved.



To obtain (1. 2) for k #+3 mod 8 we use (1. 6), with (1. 4), to
deal with the cases k=4 and to show that n = 0 mod 8 when k = 5;
then we use (1. 7), with (1. 4), to complete the proof. The original
proof of (1.2) by Adams is similar, except that (1. 3) and other results
are used instead of (1. 4).

Not every cross-section is homotopic to a Clifford cross-section,
as can easily be seen, but a recent result of Milgram and Zvengrowski
[111] is of interest here. A cross-section f : Sn-1 =V, g issaidto
be skew if f(v) = (vl, R vk) implies that f(-v) = (-vl’, ceny —vk).
For example, Clifford cross-sections have this property. Milgram and
Zvengrowski show that every cross-section is homotopic to a skew cross-
section.

Another kind of cross-section is as follows. Consider the self-
map T of Vn, Kk which changes the sign of the last vector in each k-

=s"1 Let
n-1 n,1
us say that a cross-section f : S -V n,k is homotopy-equivariant if

Tf = {fT. The case k=1 is trivial. W’hen k = 2 the condition can be

frame. Thus T is the antipodal map in the case of V

taken as Tf >~ f, since no cross-section exists unless n is even. If
k isoddand n is eventhen T =1 on Vn K’ by (1.1). Hence the
interest resides in the case k even, Notic’e that a cross-section of
Vn’ k+1 determines a lr:?llnoto;:z-lequlvarlant cross-section of Vn, kK
For let f1’ ceey £ 08 =S be the first k components of a

k
cross-section of V and write ht(v) = (flv, eeu, f

n, k+1’ k-1

v cos mt + fkv sin mt). Then ho is a cross-section of Vn Kk such that
Ll

ho o h1 = Tho' In 38 and §9 below we shall prove

Theorem (1.10). There exists a homotopy-equivariant cross-

section of Vn " if and only if n =0 mod a.k where ﬁ.k 1= Za.k
for k=2 or k=0 mod4, and ﬁ.k a, otherwise.

Let us now turn to some problems which have not yet been solved.

By general theory (see [133]) V K is trivial as a fibre bundle over

s ! if and only if the assoc1ated principal bundle Vn n= 0 admits

a cross-section, i,e. if and only if n=2, 4 or 8. Thus V (k = 4)
and V8 Kk (k = 8) are trivial as fibre bundles. For tr1v1a11ty in the
sense o% fibre homotopy type, however, nothing is known beyond



Theorem (1.11), If Vn,k

Sn-1 then n = 2r for some r = o(k). Furthermore if k is even then

is trivial as a fibre space over

n=2, 4or8,

The proof will be given in 820 below. It is tempting to conjecture
that Vn K is non-trivial as a fibre space if it is non-trivial as a fibre

’
bundle: the first unsettled case is that of V ,- As Scheerer [124] has

’
pointed out the solution to this problem is important for the homotopy

classification of Hopf homogeneous spaces.
Another unsolved problem concerns the self-map T of Vn Kk
which changes the sign of the last vector in each k-frame. Let us ’say

that Vn Kk is neutral (elsewhere row-simple) if X =1, where X denotes

the hom’otopy class of T, as before. Thus Vn is neutral, by (1. 1),

k

’
whenever n is even and k odd. Moreover Vn K is neutral when
’

n=3or 7and k is even, since then V is a retract of V

n, k

, n+1,k+1’
as remarked above. In 821 below we shall prove

Theorem (1.12). Let n be odd and k even. If Vn Kk
’

then either n+ 1 or k- n+ 1 is divisible by 2t, where t denotes the

least integer such that 2' > k.

is neutral

This gives no information when k = 2, However, in §22 we shall
prove

Theorem (1,13). Let n be odd. Then V. , is neutral if and

only if the Whitehead square W € 772n_1(sn) can be’ halved.

Here w denotes the Whitehead product of the generator
L, € ﬂn(Sn) with itself, This vanishes, as is well known, if and only if
n=1, 3or 7. Toda [144] has shown that w . can be halved and
Mahowald, in unpublished work, that w,, can be halved, It is not
difficult to show that W (n > 2) cannot be halved unless n+ 1 is a

power of two: in 823 below we shall prove

Theorem (1.14). Let n be odd and let n= 2k - 2, where

k=2, 4or8 If Vn x 1s neutral then n+1 is a power of two.
’

It seems reasonable to conjecture that (1. 14) is true for all even

values of k.



Finally let us take another look at the problem of the existence of
X over Vn, k-1 by taking
the last k - 1 vectors of each k-frame to form a (k - 1)-frame. Any
: . n-1 .

n, k-1 ind Vn,k determines a map g : Vn, k-1 =S 7, by taking

the first vector of each k-frame, and f is a cross-section if and only if

cross-sections. Suppose that we fibre Vn
map f:V

the vector g(v . vk-l) is orthogonal to Vs .- for every

GV
1’ " * Tk-1
orthonormal (k - 1)-frame (vl, cees vk-l) in n-space. When n = 3 or

7and k=3 such amap g can be defined as follows. Elements of

Rn+l can be regarded as quaternions when n = 3, as Cayley numbers

when n = 7. Moreover the pure elements of the algebra (i. e. those

with real part zero) determine a subspace which we identify with Rn.

If u and v are pure then uv is orthogonal to both u and v, moreover
uv is pure when u and v are themselves orthogonal. Hence a map g

with the desired properties is defined by g(u, v) = uv. Thus Vn 3
’

admits a cross-section over V for n=3or 7.

n, 2

’
admits a cross-section over V then

3 n, 2

s" is an H-space and so n = 3 or 7, by the main theorem of Adams
[1]. To see this, consider the unit ball B" C R®, of which S™™% is the

boundary, and the sphere S, of which s™1 s the equator and e, say,

Conversely, if Vn
’

the poles. Given a cross-section f : Vn s~ Vn 3 with projection

g:V_,= s"1 let g : B x B® = B" denote the map defined by
’
g'(au, bv) = ab sin 6 g(u, (v - u cos 8)/sin 6),

where u, v € Sn-1 and a, b eI =0, 1], also cos 6 = u.v, the inner
product, for 0 =6 =7 Now let h:S" x S = 8" be defined by

h(ae + x, fe +y) = (afe - x.y + ay + Bx + g'(x, y), where x,y¢€ B"

and -1 =a, 8 =1, Clearly h(ae + %, €) = ae + x, h(e, Be+y)=Pe+y,
and so h constitutes an H-structure on S". Of course this construction
is modelled on the formulae for quaternionic and Cayley multiplication

contained in the previous paragraph., Summing up, we have proved

Theorem (1, 15). There exists a cross-section of Vn over

3
v if andonly if n=3or 7. ’
n,2 ———~4= -

Cross-sections of Vs , Over Vs 5 have been exhibited by
’ ’

10



G. W, Whitehead [156] and Zvengrowski [167]. Such a cross-section

(following the latter) is given by g : Vs ;™ S7, where
’

g(x, v, z) = -x(y"'2).

Here the vectors x, y, z € R? of the orthonormal 3-frame are treated
as Cayley numbers once again. When x=1, andso y and z are
pure, this reduces to the cross-section V7 , ind Vs 5 defined above,

’

’
In the other direction we have

Proposition (1.16)., If k=1 then V2k+1,k+1 does not admit
a cross-section over V2k+1, X

For suppose, on the contrary, that such a cross-section
f: V2k+1,k - V2k+1,k+1 exists, By (1. 3) the restriction of f to
P2k+1, Kk can be deformed into P2k+1, k+1’ yielding a map
h: P2k+1,k ind P2k+1,k+1' Consider the induced homomorphism

R o r
PH P, ) T H Popiq i)

in mod 2 cohomology. Since f is a cross-section it follows that h* is
an isomorphism in dimension 2k, However, the generator a of

2k
2k(P ) is the cup-product square of the generator a of
Hk(P2k+1,k+1

) = 0. Thus we
obtain a contradiction which establishes (1. 16).

Finally, let us fibre V n,k over V L where 1 =1 < k< n,
by taking the last I vectors of each k- frame Then (1. 15) and (1. 16)
imply

2k+1,k+1

. . k
), which goes to zero since H (P2k+1,k

Theorem (1,17), Let 1< ?< k=n. Then V K admits a

cross-section over V 1 if and only if (i) =k - 1 and (ii) either
n=kor (n, k)= (7, 3) or (8, 4),

The cross-section of Vn , over V is defined by taking

n-1
g to be the exterior product. The other cases where a cross-section

exists have been dealt with above. To establish the converse, note that

a cross-section of Vn K over Vn 7 determines, by projection, a

’ ’

n,l+1 n,1

’

cross-section of V over V and determines, by restriction,

11



a cross-section of V over V Using these observations

n-1,k-1 n-1,21-1"
and the results obtained above we arrive at (1.17).

12



2 -The Stiefel manifolds

We continue to denote the real numbers by R, the complex
numbers by C, and the quaternions by H. Let A be one of these real
division algebras, with the usual norm and operation of conjugation.

An element x € A is called pure if x + x = 0; in the real case only
zero is pure, Complex numbers are regarded as pairs of real numbers,
and quaternions as pairs of complex numbers, in the usual way.

Consider the free right module of dimension n over A
(n=0, 1, ...) consisting of column vectors with entries in A. We
denote this module by A" or by nA, according to the context. The

standard inner product {, ) is defined so that if

X=X, eeey X))y Y= 00, ¥)
are elements of the module then

{x, y) = XY, Fo XYL

The norm is given by [x]? = (x, x).

We embed A" in An‘+1 by adjoining zero as the last entry., The
element with 1 in the rth place and zero everywhere else is denoted by
a, and belongs to A" for n=r.

Every complex n-vector (zl, ceny zn) determines a real 2n-
vector

v,

(x11 y11 AR} xn1 n

where z, =X, + iyr, and similarly every quaternionic n-vector deter-
mines a complex 2n-vector. This convention is consistent with the
embeddings described in the previous paragraph.

In A" the vectors of norm =1 form a ball Bn = B(An) of

13



topological dimension dn, where d = dimRA, while the vectors of
norm =1 form a (dn - 1)-sphere Sn = S(A™). The norm-preserving
automorphisms of A form a topological group Gn = G(An), and Gn
. As
. n n n n-1
usual we write GR") = On, G(ICH) = Un’ GH") = Spn. In the real
case the subgroup of rotations is denoted by Rn rather than SOn, to

acts transitively on Sn 50 that the stabilizer of a, is G

avoid confusion with the suspension functor. The embeddings

c c
Un R2n’ Spn U2n

are defined, in accordance with the conventions of the previous para-
graph.

An ordered set (u . uk) of vectors in A" is called a k-

1ot
frame, The k-frame is said to be non-singular if the vectors are linearly
independent; this requires, of course, that k =n, The k-frame is

said to be orthonormal if

<ui, u].> =6ij G,i=1, ..., k),

where 61]’ is the Kronecker symbol. Note that a k-frame (ul, oeey uk)

in complex n-space determines a 2k-frame
(vl, Wy eees Vi wk)

in real 2n-space, where V. denotes the real vector determined by u,

as above, and W denotes the real vector determined by -iur. If
(ul, ey uk) is non-singular or orthonormal then so is

(vl, w o Vi wk). Similarly a quaternionic k-frame determines a

TR
complex 2k-frame, and the same remark applies,
After these preliminaries we are ready to define the Stiefel
manifolds. To avoid trivialities, let 1 =k =n, We topologize
A x . x AP (k factors)
in the obvious way, and hence topologize the space of k-frames in A"

The (non-compact) Stiefel manifold 0; K is defined as the subspace of

’
non-singular k-frames and the (compact) Stiefel manifold O as the
n, k

14



subspace of orthonormal k-frames. Taking k =1, for example, we see
* n_ —q = n
that O* 1 =A {0},on’1_sn S(A™).
In fact O n, k is always a deformation retract of 0; K
’

this, recall the Gram Schmidt process which associates to each non-

To see

singular k-frame u = (ul, ceey uk) an orthonormal k-frame
= (ui, cees uk). The process is continuous and has the property that
_ - ' = _ t _ 1 3
the k-frame (1 - t)u + tu ( t)u1 + tul, ., (1 t)uk + tuk) is
non-singular, for 0 =t =1, Thus a deformation retraction

- _ , . .
ht : On,k -’On Kk is given by h (u) = (1 - t)u + tu'., In view of this

result we shall not consider 0* any further but concentrate on the

, k

(compact) Stiefel manifold 0n X
’

Perhaps the easiest way to establish the smooth manifold

structure is to consider 0n Kk as a G -space. Here the action of an

element g € G transforms the k- frame u= (ul, cees uk) into
(gul, ey g‘uk). The action of the group is transitive and the
nek+1 an) is the subgroup Gn—k - Gn’ Thus

stabilizer of (a
On,k is homeomorphic to the factor space Gn/Gn-k of left cosets

and thereby acquires its differential structure, In particular 0n n=Gn’
’
the group-space.
If 1 =1< k we can (see §7 of [133]) regard G /G
-l with fibre Gn—l/G
n,1 with fibre On-l,k-l’

taking the last I vectors of each k-frame to form an /-frame, The

a
n-k as

-k’ In other words On,k

The projection p is given by

fibre space over Gn/G

fibres over O

inclusion u of the fibre is given by adjoining to each (k - Z)-frame in
(n - 1)-space the I-frame (a.k L4+1 cc e a.k). If I =1, in particular,
then O n,k fibres over On,l = S with fibre O n-1,k-1° From this
by a stralghtforward induction we obtam

Proposition (2, 1), The manifold O n, k has dimension

3dk(2n - k + 1) - k and connectivity d(n - k + 1) - 2,

Further information can be obtained from the homotopy exact
sequence of the fibration

u p A

* *
. ..-’ﬂr(O - ﬂr(On’k) - ﬂr(Sn) -7 (0]

n-1,k-1 r-10p 1 ) e

15



If m is odd the homotopy group T (Sm) is finite for all r > m, as

shown by Serre [125]. If m is even the same is true provided r#2m-1,

The order of the Whitehead square w_ = t_ 1 is infinite when m
m m m

2m_1(S ) which L

generates a finite group is obtained, These considerations lead to

[t
is even but after factoring out the sub-group of =

Proposition (2.2), In all cases 771_(0n k) is either finite or the
’

direct sum of a finite and a cyclic infinite group. In the complex and

quaternionic cases 771_(0n k) is finite for all even values of r.
b

Following tradition we denote 0n by Vn Kk in the real case,
] ’

in the quaternionic, The

k
by Wn,k in the complex case, and by Xn,k
embeddings

C C
Wik Von, 2k Zn k< Won, 2

have already been defined. In the real case, as we have seen, there

-
n, k Vn,
admits a cross-section, Are there analogous results in the complex
nl°-

V2 ,
’ n’ 1
Wn K -’Wn 1 determines, by inclusion, a cross-section of
’ ’
Von, 2k ™ Von, v
mines a cross section of W

exist values of n, for any given k, such that the fibration V 1

and quaternionic cases? Since W a cross-section of

and similarly a cross-section of X =X deter-
n, k n, 1l

-W . Our next step is to intro-
2n, 2k 2n,1
duce a construction, called the intrinsic join, which will enable us to
prove some more general results on the existence of cross-sections.
The join X * Y of spaces X and Y is the space obtained from

the union of X, Y and X X Y X I by identifying
x,vy9,0=%x 9, )=y xeX, yeY)

A canonical homeomorphism T : X * Y=Y * X is given by
T(x, y, t) = (y, x, 1 - t). The join construction is functorial and can be

relativized: thus if (Y, Z) is a pair we write
X*(Y, Z)=(X*Y, X *Z)

The join of spheres is again a sphere,

16



Consider the homeomorphism
. -

h: Sm * Sn Sm +n

which is given by

h(x, y, t) = (x cos gt, y singt).

This can be generalized to a map

h= hk : Om,k *On,k-’om+n,k

as follows., Let u= (ul, cee, uk) be a k-frame in m-space and

v= (vl, ceey vk) a k-frame in n-space. Then hk(u, v, t) =w, where
w= (wl, cee, wk) is the k-frame in (m + n)-space given by

W= h(ul, v t), ..., Wy = h(uk, Vi t). Clearly w is orthonormal

if u and v are orthonormal. Also hk is injective, for all values of
k, and coincides with h for k =1, Henceforth we write hk =h, and

refer to h as the intrinsic map, Note that
(2.3) ph=h(p * p),

as shown in the following diagram, where p denotes the standard pro-

jection from k-frames to l-frames and 1 =1 < k,

h
_—
Om,k * On,k 0m+n,k
p*p p
_—
Om,1*%,1 - Om+n, 1

In particular take I =1 and suppose that

f:0 -0 g:On -0

m,1 m, k’ 1 n, k

are cross-sections. Then (2, 3) shows that
h(f * gh™ : 0

-
m+n, 1 0m+n, k

is also a cross-section; we shall refer to this as the intrinsic join of £

17



and g. Inthe real case, for example, if f and g are Clifford cross-
sections determined by Clifford modules M and N then the intrinsic
join is the Clifford cross-section determined by M © N. Thus the
intrinsic join of Clifford cross-sections is again Clifford, also the
intrinsic join of skew cross-sections is again skew, and the intrinsic
join of homotopy-equivariant cross-sections is again homotopy-equivari-
ant,

Given elements 6 € ﬂi(om,k) iz1), ¢¢€ ﬂj(On’ k) G=1), we
i+j+1(0m,k * On,k)’ in the usual way, by
taking the join of representative maps. If we now apply to 6 x ¢ the

can form the element 6 x ¢ € 7

homomorphism induced by the intrinsic map

h:0 * O

m, k n,k-’o

m+n,k

we obtain an element h, (8 x §) € 7 ). We normally omit

i+j+1(0m+n,k
the h,, since there is no risk of confusion with the ordinary join, and
refer to the pairing of ﬂi(om,k) with 7Tj(0n’ k) to ﬂi+j+1(0m+n, k)
thus defined as the intrinsic join. The pairing is both bilinear and
associative, as can easily be seen.

Think of the elements of On,k as n X k matrices. By changing
the sign of a column we obtain a self-map of class A, say, and by
changing the sign of a row we obtain a self-map of class u. Of course
A=1 and p =1 exceptin the real case, which we have already dis-

cussed in 81. Clearly

@) ( 2,0 % 9) = (A,0) x (1, 9),
(2. 4) {

B) L, 0) x¢=p(0x9¢)=10x* ().

Notice that hT = Uh, as shown below, where T is the switching map

and U permutes the first m and last n row vectors.

h
Om,k * On,k 0m+n,k
.| [
On,k * On,k h 0n+m,k

18



Hence we obtain the commutation law
i+1)(j+1
2.5 B0 x ¢) = (-1)ITDE g ),

I emphasize that A, and p, are trivial apart from the real case.

From (2. 3) and naturality of the ordinary join we obtain that
(2.6) p,(6 x 9) = (p,0) * (0,9),

as shown below, where p denotes the standard projection from k-frames
to I -frames.

*
7Ti(om,k) x 10, K "4i+1Om+n, k)

P*xp*l 113*

7Ti(om, l) x 7Tj(on,l)_‘*—> 7Ti+j+1(0m+n, l)

A " 3
Let 0' € ﬂi(om,k-l)’ 8" € 7Ti(0m l) denote the images of 6 € 77i(0m k)

?
under the homomorphisms induced by the standard projection, and 1e£

0#, 0#, 0;'# be defined by taking the intrinsic join with 6, 8', 6",
respectively, as shown in the following diagram, where t=1+j + 1,

= 70n1,x-1) O T 700 ) T T O k)

m T T
- 1001, k-0 ™ "t Oman, 1) T "t Oman, ) ™ - 1Omin-, k)™

Now (2. 6) implies that the central square is commutative. It is not
difficult to show, as in 82 of [67], that the other two squares are also
commutative, sign-changes being tolerated as usual. Hence the given
element 8 determines the homomorphism of exact sequences

(0#, 0#, 0%), When i=dm -1 and 6 is the class of a cross-section
this leads to

Theorem (2, 7). Suppose that 6 € ﬂdm_l(Om,k) is the class of
a cross-section. Then

04+ 150h 1) = Tt am©Om+n, &
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is injective for j < u, surjective for j =u, where u=2dn-k + 1) - 3.

Corollary (2. 8). Suppose that 6 € ﬂdm_l(

Ve ﬂdm+dn-1(0m+n,k) are the classes of cross-sections, and that

nz=2k. Then ¥ =6 * ¢, where ¢ € ﬂdn_l(On, k) is the class of a

Om,k) and

cross-section.

When k =1 the homomorphism 6 " is just iterated suspension,
and the result is an immediate consequence of the Freudenthal theorem.
Let k = 2 and suppose that (2. 7) is true with k - 1 in place of k. Then
we obtain (2. 7) as stated by applying the five lemma to the homomorphism
of exact sequences determined by 8, as in the diagram with Z =k - 1.
Thus (2. 7) follows by induction. We refer to this result as the general-

ized Freudenthal theorem.

There is a sense in which the transgression acts as a derivation
with respect to the intrinsic join. Suppose that 1 =1 < k = 27, with
m, n=k as before. Since k-l =1 the projection p from l-frames
to (k - I)-frames is defined. Let 6 € 7Ti(0m’ l)’ ¢ € 7Tj(0n’ l)’ where
i, j= 2. Then

i+1
(2.9) A(0%9)=(40)* (p,9)+ (-1)'" " (p,0) * (a9),
as indicated in the following diagram.

150m, ) * 70, )

AV N N(A

m—l’k_l)xﬂj(on’ k1) ﬂt(0m+n’ D ﬂi(om,k-l)xﬂj-

\ A /

T 1Omtn-1, k-0

.10 1907 k-

The proof of (2.9) given in [67] is rather laborious and will be omitted,
since we do not need to use it in what follows. Some other formulae

involving the intrinsic join are given in §18 below.
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3-The auxiliary spaces

The topological group S = S1 acts on Sn and the orbit space
Pn =P(A") is the projective (n - 1)-space over A. Naturally Pn+1
contains Pn, following our earlier embeddings, and the result of
collapsing this subspace to a point is a sphere Pn+1/Pn of topological
dimension dn. Since P1 is a point-space the projective line P2 isa
d-sphere,

The identification of S(C™) with SR>D) described earlier
induces 2 map PR’ = S®R?%)/SR) = S(C")/S(C) = P(CY), which is
a fibration with fibre the 1-sphere S(C)/S(R). Similarly the identifica-

tion of S(H") with S(C°™) determines a fibration
P(c®™ = s(c®™ /s(C) = s(H™) S(H) = P,

with fibre the 2-sphere S(H)/S(C). We shall refer to these as the

standard fibrations,

Let Pn,k’ where 1 =k = n, denote the space Pn/Pn-k obtained

from Pn by collapsing Pn-k to a point. 'When n =k the subspace is
empty and we make the usual convention that Pn n=P:, the union of Pn

and a point-space., We refer to Pn as a stun,ted projective space,

k

’

If, as is often convenient, we regard Pn as an identification space of

k

i
Sn directly then the point of Pn, " corresponding to (xl, e, xn) € Sn
will be denoted by [xl, ceey xn]. Notice that Pn 1 is a sphere of
topological dimension d(n - 1). It follows that P, as a complex, has

n,k’

one cell e, of dimension d(r - 1) for r=n-k+1, ..., n. Further-

?
*

more consider the cohomology ring H (Pn k) with mod 2 coefficients

in the real case, with integral coefficients ’in the complex and quaternionic

cases. Recall that H*(Pn) is the truncated polynomial ring generated

by a d-dimensional element ¢ with relation o = 0. It follows that

H*(Pn’ k)’ as a group, is generated by a set of elements (on_k, vy on_l),

where or, for n- k =r < n, is the class carried by €10 We make
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the convention that or =0 when r=n, Then 0.0 whenever

=0
r s r+s
r, s = n - k. The same notation etc, is used in mod p cohomology, for

any prime p. Let n-k=r<n If p=2 then
ds __ v
(3.1) 8q%0, = Qo
in all cases, If p is odd then

] r
G.2) ¢ %= (s)0r+s(p-1)’

in the complex case, while

2r

S
(3.3 @ or = ( s)0r+s(p-1)/2

in the quaternionic. These relations follow at once from the corres-
ponding relations in the cohomology of the projective spaces which are
readily established by the Cartan formula.

Although the relationship between Stiefel manifolds and stunted
projective spaces is important, as we shall see, there is another family,
the stunted quasiprojective spaces, which also plays a major role,
particularly in the quaternionic case. This second auxiliary family is
defined as follows.

The quasiprojective space Qn = Qn(A) is defined to be the image
of the map

9:8 XS=G,

where ¢(u, q) is the automorphism which leaves v fixed if <u, v)=0

and sends u to uq. Thus
$(u, qQ)v =u(q - 1Xu, v) +v.

We can also define Qn to be the space obtained from Sn X S by imposing

the equivalence relation
(u, @) ~ (uz, 27 'q2) (2 €89),

and collapsing Sn to a point, It is easy to check that this construction

yields a compact Hausdorff space and so can be identified with its
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embedded image in G It is easy to check that Q in the real
case, and that Q is the suspension of P in the complex case. How-
ever, Qn is not the 3-fold suspension of P;'l' in the quaternionic case,
as we shall see.

We embed Q k c Q in the obvious way, so that Q k=Q nG

We define the stunted quaslprOJectlve space Q X to be the space

n-k

obtained from Q by collapsing Q Kk to apomt We also regard

n,1°

’

Qn g asa subspace of O in the obvious way. Note that Qn 1= 0
’ ’

n,k’
When 1 =1 < k we have cofibrations

Ptk P00
Qn-l,k-l ~Q -’Qn A

nyk ’

corresponding to the fibration

o =0 -0

n-1,k-1 n, k n,l’

The close relation between O

n,k and Qn,k is already suggested by

Theorem (3. 4). The pair (0n K’ Qn k) is t-connected, where
t= 2d(n - k) + 3(d - 1), o

If k=1 the assertion is trivial. Let k = 2 and suppose that the
assertion is true with k - 1 in place of k. The inductive step and hence
(3. 4) will follow from

Theorem (3.5). Let p:E = B be a fibration with fibre F. Let
X C E be a subspace such that p|X is a cofibration with cofibre Y C F.
Then

conn(E, X) = min(conn(F, Y), conn B + conn Y).

To establish this consider the diagram shown below, where i is
the inclusion and q =p |X.

a4y
T.X, Y) = 7.(B)

T
1*l ll
m (E F) p-,: 7Tr(B)
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It follows from the Blakers-Massey theorem, as stated in (1.25) of [143],
that q, is s-connected, where s = conn B + conn Y. Hence i, is
s-connected, since p, is an isomorphism. Now (3.5) follows by the
five lemma applied to the homomorphism of homotopy exact sequences

induced by 1i, as shown below.

ST ()T ()T (X, V) .

oo

.- ﬂr(F) - ﬂr(E) - 7Tr(E, F) =

Of course (3. 4) gives some information about the cohomology of
0n K which is useful. In the complex case, for example, the informa-

tion about cohomology operations obtained from (3. 1), (3.2) implies

Proposition (3. 6). Suppose that W n, k admits a cross-section

over W 1 Let p be any prime. Then n is divisible by the least

power of p which exceeds (k- 1)/(p - 1).

Corollary (3.7). Either suppose that W admits a cross-

k
1
section over W 17 where k = 3, or that X X admits a cross-section

over Xm 1’ where k=2, Then m is d1v151b1e by 3k if k is a power
?

of two, by 4k otherwise.

Under the first hypothesis this follows immediately from (3. 6).

Under the second we use the cross-section of X over X to

m,k m,1

over W and

define, by inclusion, a cross-section of W2m’ ok om, 1’

then use the first part.
Consider the subspace En c Sn consisting of all vectors x
such that x isrealand x_=0. Since x, ..., X determines x_,
n n 1 n-1 n
under these conditions, we see that En is a ball of topological dimension
d(n - 1). The identification map by which Qn is defined determines, by

restriction, a relative homeomorphism
h: (En X 8, E X Svu E X 1) -»(Qn, Qn_l).

Hence Qn can be obtained from Qn_1 by attaching a cell of dimension

dn - 1, Tt follows by induction that Qn is a complex having one cell
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e. of dimension dr -1 for r=1, ..., n. Thefirst n- k of these

cells are contained in Qn-k; hence the stunted quasiprojective space

Qn K contains one cell e. for r=n-k+1, ..., n. Incohomology
?
with coefficients as before we find that H*(Qn k)’ as a group, is
?
generated by the classes - (r=n-k+1, ..., n) carried by €. In

the real case Qn k= Pn K and the multiplicative structure is as given
’ ?
before; in the other cases all products vanish, Now the action of Gn

on 0n determines, by restriction, a map

,k
9 Qn % Qn,k-’on,k'

It is not difficult to see, as in Chapter IV of [134], thatif r > s then

¢ maps e. X eS homeomorphically onto a cell e. ¢ 53y, of dimension
?

d(r + s) - 2. Iterating this procedure we find eventually that for every

sequence J = (j1’ jz, cee, jt) of integers such that
n= j1 > j2 > ... 7 jt> n - k the Stiefel manifold 0n K contains a

i
cell eJ of dimension d(j1 +.,.. + jt) - t. The cells corresponding to
different sequences are distinct. If we agree to associate the basepoint
of O
n?

decomposition of O

K with the empty sequence we obtain, in this way, a cellular
n, K having Qn,k as a subcomplex, Of course this
gives another proof of (3. 4).

Cell-structures of this type were first described by Ehresmann
[39], in relation to flag varieties, The construction was used by Miller
[112] specifically for rotation groups, by J. H. C. Whitehead [158] for
the real Stiefel manifold, and by Yokota [163] for the complex Stiefel
manifold, who also published an incorrect account of the quaternionic
case, The Steenrod version [134] covers all three cases and uses the
information obtained from the cell-structure to determine the cohomology,
with mod 2 coefficients in the real case and with integral coefficients in

the complex and quaternionic cases, In what follows all we shall need is

Proposition (3, 8), The cohomology ring H*(On k) (mod 2 coef-
?

ficients in the real case, integral coefficients otherwise) is generated

multiplicatively by a set of elements corresponding to the cells of Qn X’
?

The result is obvious for k=1, Let k = 2, therefore, and

assume the result is true with k - 1 in place of k. The Euler class
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of the fibration On,k - On,k-l

sequence splits and so (3. 8) follows by induction.

vanishes, by (2. 1), hence the Gysin
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4 -Retractible fibrations

Let p: E =X be a fibration with fibre F = p-l(xo), where
X, € X is the base-point, We say that the fibration is retractible if
there exists amap £ : E = F such that p|F ~1, ¥ (E, F) is a CW-
pair then p can, of course, be deformed into a retraction, Clearly
the fibration is retractible if it is trivial, in the sense of fibre homotopy
type. The Dold theorem shows (inter alia) that the converse holds under

certain conditions, Following Dold [34] we begin by proving

Proposition (4.1). Let p: E =X and p':E' =X be fibrations

and let f : E—=*E' be a fibre-preserving map. If f, as a map, isa

homotopy equivalence then f is a fibre-homotopy equivalence.

In this kind of proof it is convenient to allow homotopies over
any interval I =[0, n] (n=1, 2, ...). Let k:E'XI—+E' bea
homotopy of ff' into 1, where f': E'—=E is a homotopy inverse of f.
Lift p'k to a homotopy ! :E'XI=E such that I(e', 0)=f'e', and define {":E'=E
by f"e' =1l(e', 1), Then f" is fibre-preserving since pf"e'=p'k(e', 1)=p'e’

Now ff" =~ 1 by the (non-vertical) homotopy h : E' X I2 = E', where

hie', t) =fl(e', 1 - t) O0=t=s1)
=k(e', t - 1) l=t=2),

Note that p'h is symmetric in the sense that p'h(e', t) = p'h(e’, 2 - t).
Consider therefore the map H: E' X I2 X I =X defined by

H(e', s, t) = p'h(e', s) O0=s=1-1t)
p'h(e', 1 - t) l-t=s=1+1t)
p'h(e', s) l+t=s=1),

Lift H toa map K:E' ><I2 XI=E' such that K(e', s, 0) = h(e', s).

Then L : E'X I4 = E' is a vertical homotopy of ff" into 1, where
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L(e', t) = K(e', 0, t) 0=t=1)
K(e', t-1), 1) lst=s3)
K(e', 2, 4-t) (3=t=4).

Thus f admits a fibre homotopy right inverse which in turn, by the
same argument, admits a fibre homotopy right inverse and that, for
formal reasons, is fibre homotopic to f. Therefore f is a fibre
homotopy equivalence, as asserted.

In the applications we have to deal with further conditions are

satisfied which enable us to formulate the Dold theorem as

Theorem (4,2). Suppose that X is path-connected, also that E

and E' have the homotopy type of CW-complexes. Then a fibre-

preserving map f : E = E' is a fibre homotopy equivalence if it induces

a homotopy equivalence on the fibres.

In fact it is sufficient to suppose that f induces a weak homotopy
equivalence of the fibres. For by application of the five lemma to the
induced homomorphism of the fibre homotopy sequence (with special
treatment in the bottom dimensions) it follows that f itself is a weak
homotopy equivalence and hence a homotopy equivalence, by the theorem
of J. H. C. Whitehead [159]. Thus (4. 2) follows from (4.1).

In particular, suppose that E is retractible with homotopy-
retraction p: E = F, Take E' to be the product fibration X X F and
take f to be the fibre-preserving map which has p as its second compo-
nent. Then (4. 2) yields

Corollary (4.3)., Suppose that X is path-connected, also that

E and X X F have the homotopy type of CW-complexes, If E is

retractible then E is frivial, in the sense of fibre homotopy type.

Let us say that the fibration is decomposable if E has the same
homotopy type as X X F, Does this condition imply that the fibration is
trivial, in the sense of fibre homotopy type? This question is discussed
in a recent article [81]. In general the answer is negative, but some

positive results can be obtained as follows., We shall assume, for
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simplicity, that (E, F) is a CW-pair. We begin by proving

Theorem (4, 4). Suppose that F = Sq, where q =1, and

ﬂq(X) = 0. If E is decomposable then the fibration is retractible,

Forlet f: E—=+X, g:E— s? be the components of a homotopy
equivalence E = X X s?. Since (X) =0 we have g, : 7 (E) T (Sq)
and u qu(Sq) = 11 (E), by exactness in the fibre homotopy sequence
where u: F C E Hence g*u*ﬂ (Sq) =7 (Sq) and so the self-map gu

of S? has degree 1., Now (4. 4) follows at once, and we deduce

Corollary (4. 5). Let n=k =2, If the fibration p: O, 0
4

is decomposable then it is trivial, in the sense of fibre homotopy type.

nk-1

For (4. 4) is applicable since
g=dn-k+1)-1=dn-k+2)-2=conn(O
to this in 820 below.

n, k-l)’ We shall return
We say that a group G has the Hopf property if every homomor-
phism of G onto itself is an isomorphism. Finitely-generated abelian

groups, for example, have the Hopf property. Following [88] we prove

Theorem (4. 6), Suppose that X = Sm, where m = 2, and that
ﬂm_l(F) has the Hopf property. If E is decomposable then the fibra-

tion admits a cross-section,

For consider the fibre homotopy sequence
Py m A u,
-
. ﬂm(E) ﬂm(S ) - Tlm_l(F) - ﬂm_l(E) = 0.
. - . m,
If E is decomposable then ﬂm_l(F) = ﬂm_l(E), since ﬂm_l(S )=0.

Since

u*ﬂm_l(F) = ﬂm_l(E) = ﬂm_l(F)

it follows from the Hopf property that u, is an isomorphism. Hence
m m
Aﬂm(S )=0 and p*ﬂm(E) = 7Tm(S ), by exactness. Therefore E

admits a cross-section, as asserted, We go on to prove

Theorem (4. 7). Suppose that X = Sm, where m = 2, that
ﬂr(F) (r=1, 2, ...) has the Hopf property, and that ﬂm(F) is finite,
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If E is decomposable then the fibration is retractible,

For let f: E = Sm, g : E = F be the components of a homotopy
equivalence h: E = S™x F, Let f':8" = E, g' : F =+ E be defined
by the restriction of a homotopy inverse h': S™ x F=E. Then
ff' =1, gg' =1 while gf', f{g' are nulhomotopic. Now p*g;ﬂm(F) =0,

since Trm(F) is finite, and so
m m
Ay ™ =p,m ®) =7,

by (4. 6). Therefore pf' is a map of degree %1, and so induces an auto-
morphism of 7 (S") for all r. Nowif @€ n (F) then p,g,a = p,f5,
for some S € ﬂr(Sm). Hence gia -8 ¢ u*ﬂr(F), by exactness, while
g*(g;a - f8) = @, since gg'~1 and gf' is nulhomotopic. Thus
g*u*ﬂr(F) = Tlr(F) and so g,u, is an automorphism of ﬂr(F), by the
Hopf property, for all values of r. Therefore gu is a homotopy equi-
valence, by the theorem of J, H. C. Whitehead [159]. By composing g
with a homotopy inverse of gu we obtain a map E = F which is homo-

topic to a retraction. This proves (4. 7), and we deduce

Corollary (4. 8). In the complex and quaternionic cases, if the

fibration 0n K nd Sn is decomposable then it is retractible and hence
’

trivial in the sense of fibre homotopy type.

By (4. 6) the fibration has a cross-section and so 2n + 4 = 3k,
by (3. 7). Recall that ﬂr(Sm) is finite when m is oddand r > m,
Hence it follows by induction on k, using the homotopy exact sequence,

that the homotopy groups 7T(Sn, (0] 1) are finite, Hence (4. 8)

n-1,k-
follows immediately from (4. 7).

This argument breaks down in the real case since the homotopy
groups in question may be infinite. To overcome this difficulty we prove
a cohomological counterpart of (4. 7), as follows. Consider the Wang

exact sequence
r-m r s p
... *H (F)-H E) »HF)—>...,

in mod 2 cohomology. If E is decomposable then
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H' (E) =~ H*(F) @ B ""™(F) .
If Hr(F) is finite for all r then u* is surjective. Hence

Theorem (4.9). Let p: E=S™ be a fibration with fibre F,

where m = 2. Suppose that the mod 2 cohomology ring H*(F) is

generated (multiplicatively) by elements of dimension less than m. If

E is decomposable then gu induces an automorphism of H*(F),

where g :E = F is as before.

This can be exploited as follows. The fibre space E over s™
corresponds to an element « € ﬂm_l(H, e) where H denotes the
function-space of (free) self-maps of F, and e denotes the identity.
Recall that E is trivial, in the sense of fibre homotopy type, if and

only if @ = 0. Consider the homomorphism
C# : Tlm-l(H’ e) -’Tlm-l(H’ C),
induced by precomposition with a given self-map c¢. We prove

Lemma (4.10), Themap ¢ : F = F can be extended over E

if and only if c = 0.

Let w, : s™ 1 4 B™ deform the inclusion into the constant map.
The collapsing map B™ - Sm induces a trivial fibration over Bm.

Hence there exists a relative homeomorphism

h: B"x F, s™ ' x F) =&, F),
such that the adjoint of hISm-1 X F represents a, If ¢ extendstoa
map f:E—=F then

th(w, X 1) : STlx Far
is a deformation rele X F of chlSm_1 X F=F into cp, where
p: Sm'1 X F=+F is the projection. Hence cya= 0, by using the
adjoint of the deformation, The argument is reversible and we obtain
(4. 10) as asserted,

These results enable us to prove
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. . n .
Theorem (4.11). If the fibration Vn+1,k+1 =S is decom-

posable then it is trivial, in the sense of fibre homotopy type.

By (3. 8) and (4. 9) there exists amap g :V v such

n+1,k+1  'nk
that gu induces an automorphism of the mod 2 cohomology ring
H*(Vn,k)' Hence it follows from the universal coefficient theorem that
gu induces a C-automorphism of the integral homology groups
Hr(Vn, k)’ in all dimensions, where € denotes the class of abelian
groups of odd order. Hence gu induces a C-automorphism of ﬂr(Vn,k)’
in all dimensions, by the Serre-Hurewicz theorem as in [126]. Hence

if H denotes the space of self-maps of V then
n,k n,

k

@y 7 (1 @)= 7 0, g

is a C-isomorphism, by the comparison theorem, mod €, applied to the
spectral sequence of Federer [44]. The action of 0n on Vn K deter-
’
mines an embedding i: O CH .. If oen_.(0O_, e) is the classi-
n n,k n-1""n
fying element of our fibration in the sense of fibre bundle theory then
T=1i0¢€ ﬂn-l(Hn K’ e) is the classifying element in the fibre space
’

sense, By (4. 6) there exists a cross-section. Thus n is odd, hence
20= 0, hence 27=10. But (gu)#T = 0, by (4.10), and so the order of

7 is odd. Therefore 7= 0 and the proof of (4. 11) is complete.
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5-Thom spaces

This section is partly based on the work of Atiyah [7]. Suppose,
for simplicity, that X is a finite complex. The trivial n-plane bundle
R” X X is denoted by nR or simply by n. If U and V are (euclidean)
vector bundles over X we say that U and V are J-equivalent (written
ud V) if there exist integers m and n such that the associated sphere-
bundles S(U ® m) and S(V © n) are of the same fibre homotopy type.
The set of J-equivalence classes of vector bundles over X is denoted
by J(X), and the natural functor I~{R(X) =JX) by J. If U1 and U2
are vector bundles over X then S(U1 ® Uz) can be identified with the
fibre join S(U1) * S(Uz)’ Now the fibre join of fibre homotopy equi-
valences is again a fibre homotopy equivalence. It follows that if
U1 J V1 and U2 J V2 then U1 ® U2 Qvl ® Vz' Hence J(X) acquires
an abelian group structure from the direct sum, making J a homo-

morphism. We now prove

Theorem (5.1), The group J(X) is finite,

Since f{R(X) is finitely generated it is sufficient to show that
J(X) is a torsion group. In [7] Atiyah proves this using the classifying
space for fibrations but the following argument seems simpler. It is
sufficient to prove

Lemma (5,2), Let E = S(V) be a sphere-bundle over X. Then

Em = S(mV) is retractible, for some positive integer m.

Since V can be replaced by a Whitney multiple of itself, if
necessary, we can suppose without real loss of generality that
q> dim X, where q=dim V - 1, and that V is oriented. If
dim X =1 then (5, 2) is trivial. Let Y be a subcomplex of X such
that X = e v Y, where n = 2, and make the inductive hypothesis that

(5. 2) is true with Y in place of X. Without real loss of generality we
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can suppose that E IY is retractible. Consider the relative homeo-
morphism 1 : (B", S* 1) = (X, Y) by which the n-cell e" is attached,
The induced bundle f*E is a product, and so f can be lifted to a fibre-

preserving relative homeomorphism
g: B x s s x s (E P,

where F =E|Y and S? is the fibre. Thus E - F is the union of an
n-cell, the image of (B" - §*"}) X e under g, and an (n + q)-cell, the
image of (B" - Sn_l) x (8% - e). Choose a retraction p : F =S and
consider the composition ph : P lxgla s? where h= gISn-1 x g3,
We can extend ph over B" X eu st x s? since n< q, and then

the obstruction to further extension over B" X Sq is an element 6, say,
n+q-1(sq)' If we take the r-fold fibre join of this situation with

itself, where r = 2, then 6 is replaced by Br, say, where Br is

of =7

stably equivalent to ré (see PartI of [4]). Since the stable group of
the (n - 1)-stem is finite we can choose r so that Br = 0, and hence
the r-fold fibre-join of ph with itself can be extended over the r-fold
fibre join of f*E with itself. By composing such an extension with the
inverse of the r-fold fibre join of g with itself, we obtain a retraction
of S(rV). Therefore (5.2) follows by induction and so (5. 1) is proved.

The argument we have just given is used by Adams in Part I of
[4] to establish an important generalization of the lemma, known as the
'Dold theorem mod k'. In this the hypothesis is that there exists a map
p: E—=>S? such that pISq has degree k, and the conclusion is that m,
in (5. 2), can be chosen to be a power of k.

Let V, as before, be a (euclidean) vector bundle over the finite
complex X, The vectors v € V such that Ivl =1 form the associated
ball bundle B(V), while those such that Ivl =1 form the associated
sphere bundle S(V). The Thom space XV is defined to be the space
obtained from B(V) by collapsing S(V) to a point. If the fibre of V
is identified with R", where n= dim V, and B"/8" ' with S then
S" is embedded in XV. We say that XV is retractible (alternatively
coreducible) if s" is a retract of XV. This is the case, for example,
if S(V) is retractible in the sense of §4, Notice that
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(5. 3) conn(XV, s") = n + conn X.
Following Bott [31] we prove

Theorem (5. 4). If XV is retractible then so is S(V & 1).

We can obtain S(V © 1) from B(V) by identifying points of
S(V) with their images under the projection S(V) = X. Thus XV can
be obtained from S(V © 1) by collapsing the canonical cross-section
to a point, Note that Sn is mapped identically, where n=dim V. By
composing a retraction XV -+ 5" with the collapsing map S(V& 1) = XV
we obtain a retraction S(V & 1) = Sn, as required. In fact S(V) itself is
retractible, by suspension theory, if n- 1> dim X,

The homotopy type of XV is determined by the homotopy type
of the pair (B(V), S(V)) and hence, using the fibre-cone construction,
by the fibre homotopy type of S(V). If U=V ® m, where m = 1, then
XU is homeomorphic to SmXV, Thus the S-type of XV depends only on
the class a, say, of V in J(X), and can therefore be written as x%
We say that X% is retractible if XV is S-retractible. Thus (5. 4)

implies

Corollary (5. 5). If Xa is retractible, where a € J(X), then

a=0,

Since J is a contravariant functor we can consider the orbits of
J(X) under G(X), the group of homotopy classes of homotopy equiva-
lences of X with itself. If two elements lie in the same orbit then their
Thom spaces have the same S-type. Under certain conditions Feder and
Gitler [43] have shown that this correspondence between orbits and S-
types is bijective, and have used this in [42], [43] to classify stunted
projective spaces by S-type. The classification is complete in the com-
plex and quaternionic cases but not in the real case. However, I under-
stant that Gitler and Mahowald, using earlier results of Mahowald [100],
have recently succeeded in completing the classification in the real case
as well,

If U, V are euclidean bundles over X then the Thom spaces of
U and U ® V are related as follows. Let g : S(V) = X denote the
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projection in the associated sphere-bundle. Consider the inclusion

B(U) X 8(V) _, B(U) X B(V)
S(u) X s(v) s(U) X B(V)’

where X means the fibre product over X. Here the domain is the Thom
space of the induced bundle g*U over S(V) while the codomain contains
the Thom space of U itself as a deformation retract. Collapsing the

subspace to a point yields

B(U) X B(V) _BUSYV)
BUXSV)USUXBV) _SUDV)’

the Thom space of U ® V. In this sense, therefore, we have a cofibration
of the form

.6) s VaxV-xU®V,

We now show, following Atiyah [7], that the stunted projective
spaces and stunted quasi-projective spaces of §3 can be obtained as
Thom spaces of bundles over projective spaces. Recall that the Hopf
(or canonical) line bundle L =1L A Over P(Ak) is obtained from
A X S(Ak) by identifying (u, v) with (uz, vz) for all z €S, where
UeA ve S(Ak). Hence the ball bundle associated with (n - k)L,
where n = k, is the space obtained from Bn-k X Sk by identifying

(u, v) with (uz, vz) for all z €S, where ueB Ve Sk An equi-

n-k’
variant relative homeomorphism

(5.7) h: (B, XS, S , X8)>E, S )

is given by h(u, v) = (u, (1 - tz)%v), where t = Iul Factoring out the

action of S we obtain a homeomorphism between the Thom space of

(n - k)L, over Pk’ and the stunted projective space Pn, X
The stunted quasi-projective spaces can be similarly represented,

with the help of a certain (real) (d - 1)-plane bundle L' over Pk' To

define this, let A' € A be the subspace of pure elements u (i.e. those

such that u=-u) and let S acton A' sothat z €S sends u into

z 'uz, Then L' is obtained from A’ X S(Ak) by factoring out the

diagonal action. The same construction as was used in the earlier case,
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with obvious modification, yields a homeomorphism between the Thom
space of (n - k)L ® L', over Pk’ and the stunted quasi-projective
space Qn,k' We omit the details. In the real case L'= 0, and can be
ignored. In the complex case L'=1 and so Qn, k(C) is the suspension
of Pn, k(C), as can easily be seen directly. In the quaternionic case L'
is the 3-plane bundle associated with the standard fibration

g: P(C2k) - P(Hk). Hence it follows from (5. 6) that Qn k(H) is the
cofibre of the map ’

Pon, 2k(©) = P ()

induced by the standard fibration.
When the base space is a sphere the Thom space can be described
m-1

in terms of the Hopf construction, as follows., Givenamap T:S -’On,

of homotopy class « € ﬂm_l(On), we first define

£ Sm-l « Sn-l _’Sn-l,
where f(x, y) = T(x)(y) (x € Sm_l, y € Sn-l). The sphere-bundle
S(V) over s™ which corresponds to T can be obtained from
(B™ x §71) + §*1 by identifying points of S™1 x §* 1 with their
images under f, as explained in [89]. Hence it follows that the Thom
space of V can be obtained from (B™ x Sn_l) + 8" by identifying

points of S 4 8! with their images under

hos™!l, glagn

where h is obtained from f by the Hopf construction. In terms of
homotopy type, therefore, the Thom space is the mapping cone of
Ja e T +n_1(Sn), the homotopy class of h. Note that the Thom space
is retractible if and only if Ja = 0.
For example, consider P 2 and Q 20 regarded as Thom
spaces of vector bundles over the d sphere P In the complex case
the Hopf line bundle is classified by the generator of 7 (0 ), which
corresponds under J to the Hopf class in 7 (S ). We see, therefore,
that Qn, 5= SPn, 5

is the (2n - 5)-fold suspension of the Hopf class. It follows at once that

is the mapping cone of (n - 2)n, where 7 = Mon-3
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(5.8) A, . =(n-2)n,

where A denotes the transgression operator in the homotopy sequence

of the fibration Wn nd Wn Hence a cross-section exists if and only

,2 1

if n is even,

In the quaternionic case we are concerned with euclidean m-
plane bundles over S4, which are classified by elements of 773(0m).
Points of S’ are represented by quaternions of unit norm and points
of §° by pure quaternions of unit norm. Let

a 3 b
O « 8 =0
3 4

be defined by
-1
a(z)(q) =z qz, b(z)(r)=rz,

where z, r €8’ and q eSZ. The 3-plane bundle L' over P2 des-
cribed above corresponds to a, under the standard classification, while
the 4-plane bundle L correspondsto b, If a € 773(03) denotes the
class of a then Ja = w, the Blakers-Massey generator of

776(83) = le. If Be 773(04) denotes the class of b then JB is the

Hopf class in 777(S4). Thus Pn is the mapping cone of (n - 2)v,
’

2

where v = V4n-8 denotes the (4n - 12)-fold suspension of the Hopf class.

Also Qn 2 is the mapping cone of w, for n = 3, and the mapping cone
’

of nv, for n> 3, since w is stably equivalent to 2v. It follows at

once that

- e (=2
(5.9 Aty = 1o @> 2),

where A denotes the transgression operator for the fibration
Xn, 2 - Xn-l' In the stable range v is of order 24, Hence a cross-
section exists if and only if n is a multiple of 24, Moreover Pn, 2(H)
and Qn, 2(H) are never of the same S-type.

This information about the quaternionic case can be used to prove

Proposition (5.10). If m = 0 mod 24 then Wm 4 admits a
’

cross-section over Wm

1

’
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~ s s
For all m > 4 the group 772m_2(Wm_1, 2) is an extension of

the cokernel of Z2 = =12 by

A
Tom-1Wmo1,1) 8 TomoWmoo 1) =224

the cokernel of

A
Z, = Tom-2Wm 1,0 ™ Tom-3Wpoo 1) = Z,

When m is even both these transgression homomorphisms are injective,
by (5. 8), and so ﬂ2m-2(wm-1, 2) = le.

follows from (5. 9) and naturality that

Hence for m = 0 mod 24 it

a: 772m-1(Wm, 1) - 772m-2(Wm-1, 2)
is trivial and hence that Wm 3 admits a cross-section over Wm 17 by
’ ’
exactness., However these cross-sections of Wm 3 can be lifted to
’
w as is shown by the exact sequence

m, 4’

Py
Tom-1Wm 8 = Tom 1 Wi 3) = o oWi_5 1) =0
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6-Homotopy -equivariance

The purpose of this section is to introduce a series of homotopy-G
notions, where G is a discrete group. For any G-space X we denote
by 8y ! X = X the action of an element ge G, If X and Y are G-

spaces we describe amap f: X =Y as a homotopy-G map if

-1
g#fg# - f9

for all g e G. If f is a homotopy-G map and a homotopy equivalence
then any homotopy inverse of f is also a homotopy-G map; in that case

we describe f as a homotopy-G equivalence and say that X and Y

have the same homotopy-G type. Also we describe a G-space X as

(homotopy-G) neutral if gy = 1 for all g € G. This is the case, for

example, if X 1is contractible with any G-structure, or if X is a sphere
with orientation-preserving G-structure,

Now consider the category of G-spaces E, F, ... over a given
G-space X. We describe amap f: E=F over X as a homotopy-G
overmap if g#fg;#1 is homotopic to f over X for all g € G. When

E, F, ... are fibre spaces over X the term fibre-preserving

homotopy-G map may be used instead. The other homotopy-G notions

are extended to the category of spaces over X in the obvious way.
Let U, V be G-vector bundles over the G-space X. We say
that an isomorphism f: U= V of vector bundles is a homotopy-G
isomorphism if f and g #fg;%1 are homotopic through isomorphisms,
for all g € G, If such an isomorphism exists we say that U and V

are homotopy~G isomorphic. Notice that if U, V and W are G-vector

bundles over X with U homotopy-G isomorphic to V then U W is
homotopy-G isomorphic to V& W and U ® W is homotopy-G isomor-
phicto V® W,

From now on we suppose that X is a pointed G-space, i.e. g #

is a pointed map for all g € G, The Thom space of a G-vector bundle
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V over X is a pointed G-space XV. I U=V ®nR, where n=1,
then XU is G-equivalent to SnXV. If S(V) is retractible, as a homo-
topy-G space, then so is XV; conversely if XV is retractible then so
is S(V © 1), by the argument used in §5. Moreover if U and V are
G-vector bundles such that S(U) and S(V) have the same fibre homo-
topy-G type then XU and XV have the same homotopy-G type. Follow-
ing [82] we say that U and V are J/G-equivalent if S(U ® mR) and
S(V & nR_i) have the same fibre homotopy-G type, for some m and n,
where R has trivial G-structure.

The homotopy~-G version of Spanier-Whitehead S-theory presents
no difficulty. The suspension of a homotopy-G map is a homotopy-G
map, and the converse holds in the stable range. Thus the notions of

stable homotopy-G type, etc. are defined. Notice that the J/G-equivalence

class of a G-vector bundle determines the stable homotopy-G type of the
Thom space, It is not hard to show (see [82]) that the J/G-order is always
finite,

For example, let G = Z2 act on the real projective space Pk'1
by reflection in the hyperplane of the last coordinate, Regard the Hopf
line bundle L over Pk-1 as a Zz-vector bundle in the obvious way.
Then the Thom space of (n - k)L corresponds, under the homeomor-
phism of 85, to the stunted real projective space Pn, X’ with Z2 still
acting by reflection in the hyperplane of the last coordinate. Thus the
stable homotopy-Z2 type of Pn,k’ with this Zz-structure, depends only
on the residue class of n mod ﬁk, where ﬁk denotes the J/Zz-order
of L over PX1,

The treatment of duality requires a brief comment, Let
f:X~Y=>s" bea duality map in the ordinary sense (see [131]). If

X and Y are G-spaces we describe f as a homotopy-G duality map

if f is a homotopy-G map with respect to the neutral G-structure on
Sn. In that case the dual of the stable homotopy class of g 4t X=X
is the stable homotopy class of gy : Y==Y. Thus Y is stable neutral,
or S-neutral, if and only if X is,

From now on take G = Zz’ for simplicity; the general case is
dealt with in [82]. Then g 4 is an involution, where G is the generator.

Suppose that we have a Zz-vector bundle V over the Zz—space X which
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is trivial as a vector bundle. Choose a trivialization 6 :V =+ X X M,

where M is a trivial Zz-module, and transfer the Zz-structure of V
to XX M through 6. Use the automorphism of X X M thus obtained
as a clutching function and thereby construct a vector bundle V g over
the suspension SX. Clearly 0 is a homotopy-Z2 isomorphism if and

only if V 0 is trivial as a vector bundle. Furthermore
S(8) : S(V) = X X §(M)

is a fibre homotopy-Z2 equivalence if and only if S(V 9) is trivial in the
sense of fibre homotopy type. If we replace 6 by ¢, say, where ¢ is alsoa
vector bundle trivialization of V, then VB ® U is stably isomorphic to
v ¢ ® (Sg #)*U, where U is the vector bundle constructed by treating the

automorphism ¢0 "

of X X M as a clutching function,
Recall that the f{R-order of L over Pk'1 is precisely ak, the
power of 2 defined in 81. Regarding Pk'1 as a Zz-space and L asa

Zz-vector bundle we now prove

Proposition (6.1). If k> 2 and k # 0 mod 4 then a L is

trivial, in the sense of homotopy-Z2 isomorphism. If k=2 or k=0

mod 4 then akL is non-trivial, in the same sense, while 2akL is
trivial,

Take k = 2, to start with, and identify P' =S, in the usual
way, so that Z2 acts by reflection on Sl, Any trivialization of 2L, as
a vector bundle, yields a generator v € f{R(SZ) = Zz’ through the con-
struction we have just described. Hence 2L is stably non-trivial, as a
Zz-vector bundle. Moreover 2L is not J/Zz-trivial, since Jy # 0.
The proof that 4L is trivial in the sense of homotopy-Z2 isomorphism
is left as an exercise.

To deal with the general case, let us denote the real line by R

or R' according as Z2 acts trivially or not, so that

Xl = p( - VR ®RY)

as a Zz-space. In the Clifford algebra Ck let e = € denote the last

element of the generating set. The action of Z2 on the sphere
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&1 s(k- )R ®RY

is given by x H* e,x. e, where . denotes multiplication in the Clifford
algebra. We regard C as a Z -graded algebra in the usual way (see
[9]). Let (M ! ) be a graded module over C with dim M’ = n,

say. The vector bundle nL, over Pk ! as a space, can be identified
with (Sk_1 x MO)/Z2 where Z  acts by sign-reversal on both gkl

and M. Under this identification, the involution on the Zz-vector bundle
nL, over Pk'1 as a Zz-space, transforms +(x, y) into *(e.x. e, y).

Consider the vector bundle trivialization

6. xmz, - X!
given by 6(x(x, y)) = #x, x.y). This transforms the involution on the
domain into the involution on the codomain which sends (x, z) into
(x, ¥(x, z)), where y : PElx Ml - M s given by Y(¥x, z) = X.e.X.e.2
(x € Sk'l, zeM'). Now ¥ is equal to the composition

pK 1 x Mt e F oy b M,
where 7n(tx) =x.e.x, 0z =-e.2z, and u(x, y) =x.y. Hence
(nL) 0~ (S7)*W, where (nL) p is the vector bundle over SPk'1 obtained
from Y by the clutching construction and W is the vector bundle over
Sk obtained from p by the clutching construction. If (M0 Ml) is
irreducible, so that n=a, then [W] generates KR(Sk), as shown in
[9]. Now KR(S )=0 when k=3, 5, 6 or 7 mod 8 moreover
(Sﬂ)*f{R(Sk) =0 when k> 2 and k=1 or 2 mod 8 (see Karoubi [90]
for example). This proves (6. 1) when k> 2 and k # 0 mod 4,

This is no longer true when k = 0 mod 4, To see this consider

the following exact sequence, where u : pE2c Pk 1

(Sm)* . (Bu)px
Ko = R - R (epF?
k-1
When k = 0 mod 4 we have KR(S ) = Z while KR(SP =Z Zz’
KR(SP ) =7 ,» 38 shown by Karoubi [90]. By elementary algebra the
image (S7)*y € KR(SPk ) of a generator y € KR(Sk ) cannot be halved,

and so we obtain that akL is stably non-trivial, in the sense of homotopy-
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Zz-isomorphism. Of course 2akL is trivial, as a Zz-vector bundle,
since 2::1k =a 4 In the next section we shall show that akL is not
J/Zz-trivial when k =0 mod 4.

Returning to the general case we now describe another approach,
due to étiyah and Segal, which will be needed later. For any Zz-space
X let X denote the mapping torus of g W i. e. the space obtained from
X X I by identifying (x, 0) with (g#x, 1) for all x eX, If X is
neutral, for example, then X has the homotopy type of X X Sl. For
iny Zz-vector bundle V over X we regard \7’ as a vector bundle over
X in the obvious way. Let U, V be Zz-vector bundles over X and let
f: U=V bea homotopy-Z2 isomorphism. Thus there exists a homotopy
ht of f into g #fg;%1 which is an isomorphism for all values of t.

Hence an isomorphism f: 02V is defined by
fu, t) = (hu, ) (WeU, teD.

Therefore fJ and \7 are (stably) isomorphic if U and V are (stably)
homotopy-Z2 isomorphic. Similarly fJ and \A/' are J-equivalent if U

and V aredJ /Zz-equivalent. The converse is also true but will not be
needed in what follows.

To apply this principle of the mapping torus, some information

about RR(f() is required, This can be obtained by various ad hoc
methods, as we shall see, or by regarding 5( as a fibre bundle over

s! with fibre X and 'monodromy' exact sequence of the form
1- g;

KX S Kp®) K0 = KX
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7-Cross-sections and the S-type

Following Woodward [161] we begin by proving

admits a cross-

Theorem (7.1). If the Stiefel manifold 0n Kk
section then the sphere-bundle S(nL) is trivial as a fibre space over

Pk'

Recall that the total space of S(nL) is obtained from Sn X Sk
by identifying

(u, v) ~ (uz, vz) (ue Sn’ Ve Sk),

for all z €S. Givenamap f: Sn -’0n we define a self-map f' of

Sn X Sk by

,k

£'(u, ¥) = ([, (v), V),

where fu : Sk ind Sn denotes the S-map given by f(u). Factoring out the
action of S we see that f' induces a fibre-preserving map

£ : S(nA) = S(nL),

over Pk' If f is a cross-section then f" is a homeomorphism over
the point space P1 and so f" is a fibre homotopy equivalence, by

Dold's theorem. This proves (7. 1) and hence the 'only if' part of

Theorem (7.2). Let tk > 0 be the J-order of the Hopf line
bundle over P.. Then O
— "k n
n = 0 mod tk

admits a cross-section if and only if

,k
To prove the rest, consider the function-space En K of S-

’
equivariant maps Sk - Sn‘ Since every element of O determines

n, k
Note that

such a map we can regard On,k as a subspace of En,k’
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On, 1= En, 1 In particular. We now prove

Theorem (7. 3). The pair (E
t=2dn-k +1)- 3,

n, K’ On, k) is t-connected, where

In the real case this result is due to Haefliger and Hirsch [52];
the general case is dealt with in [73] by essentially the same method.

The first step is to show that the restriction map En, K ind En,k-l is

a fibration, Taking the inclusion map Sk-l C Sn as basepoint in En k-1
’

k of the fibration contains the fibre Sn-k 1 of

Wing 0n k-1 The second step is to show that the pair
’ I3 =

(thl:’l;sn-k+l) has the same homotopy type as the pair

(@ Sn’sn-k+1)’

ding is the standard one. The last step is to consider the homomorphism

we see that the fibre Fn
the fibration 0n

where  denotes the space of loops and the embed-

of exact sequences shown below and proceed by induction on k.,

- 7Tr(sn-k+1) g 7Tr(on,k) - 7Tr(on,k-l) RERE

o

oo ™ ﬂr(Fn, k) - ﬂr(En, k) - ﬂr(En,k-l) -...

The vertical homomorphism on the left is equivalent to the iterated
suspension
T Cnk+1) ™ Trrak-1)Sn)
by the second step, and so is an isomorphism, by the Freudenthal
theorem in the relevant range; hence the inductive step follows by a
five lemma argument and we obtain (7. 3).
We are now ready to complete the proof of (7.2). By hypothesis,

S(nL) 1is S-retractible over P Suppose, in the first place, that

X
n> 2k. Then S(nL) is retractible, by suspension theory, and a

retraction f : S(nL) = Sn determines a map g : Sn X Sk - Sn such that
g(u, v) =g(uz, vz) (ue Sn’ vV € Sk’ z € 8S).

The adjoint g': Sn -’En K of g is a cross-section, since f isa
td

retraction, and g' can be deformed into a cross-section of 0n K’ by
td
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(7. 3), since n > 2k.

Finally, suppose that n = 0 mod tk with n = 2k. Then Pm K
’

and Pm+n,k have the same S-type, for all m = k. In the real case

it follows from (1. 6) and (1. 7) that k = 9 and hence that tk =, the
Hurwitz-Radon number. The complex case when k = 2 has already
been dealt with at the end of 85. In the complex case when k = 3 it
follows from the formulae (3,1), (3. 2) for the cohomology operations
that n is divisible by 2k or 4k according as k is or is not a power
of 2, hence n> 2k in either case, The quaternionic case is similar
and so the proof of (7. 2) is complete.

Let us now look at this result from the homotopy- equivariant point

of view. Take the real case, first of all, and regard Vn g asa Zz'
1
space by changing the sign of the last column, as in §1. For Vn 17 in
td
, k-’Vn, 118
equivariant and we can ask, as in §1, when there exist homotopy- equivariant
cross-sections., For this we regard Pk'1 as a Zz-space, using

particular, the degree of the action is (-1)n. The fibration Vn

reflection in the hyperplane of the last coordinate, and the Hopf line bundle
as a Zz-vector bundle similarly, just as in §6. Returning to the begin-
ning of this section we find that a homotopy-equivariant cross-section

f: Vn 1~ Vn Kk determines a fibre homotopy-equivariant equivalence
’ ’
f" : S(nR) = S(nL),

over Pk-l. This leads to

Theorem (7.4). Let & be the J/Z -order of the Hopf line bundle
=€ % 2

over Pk-l. Then Vn admits a homotopy-equivariant cross-section

k
’
if and only if n =0 mod ﬁk

The proof is very similar to that of (7.2). The only difficulty
occurs in the 'if' part when n = 2k, Using (7. 2), however, we see that
in this range either Vn

Vn, k+1
homotopy-equivariant cross-section, as required.

Kk admits a cross-section with k odd, or
’

admits a cross-section. Thus in either case Vn K admits a
’

The complex Stiefel manifolds provide another example, Consider
the self-map T of Wn Kk given by complex conjugation. The degree of
’

the actionon W, is (-1)". The fibration W =W, , is equivariant,
’ ’

1 ,k 1
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with respect to this action of Zz’ and again we can ask whether there
exist homotopy-equivariant cross-sections. For example the cross-
section

Sp(l) = Xl,1 = W2,2 =U(2)

is homotopy-equivariant, since T transforms z € S(H) into jzj'l.
To discuss this question we regard Pk(C) as a Zz-space, under com-

plex conjugation, and L=L_ as a Zz-vector bundle similarly, Then

C
the argument used to prove (7. 2) yields

Theorem (7. 5). Let Bk be the J/Zz—order of the Hopf line
bundle over Pk(C). Then Wn "

section if and only if n=0 moa Bk‘

A further result of the same type will be given in the next section,

admits a homotopy-equivariant cross-

The numbers ak and b, will be calculated later.

Returning to the 1;eneral case we now introduce a second form
of the intrinsic map which enables some further relationships to be
established, as follows. Points of the cone CX on a space X are
written in the usual form tx, where t €I and x ¢ X. Let M be an
S-module so that V = (M X Sk)/S is a vector bundle over P

sider the map

X’ Con-

. n
6:CO ) X MX§ =M X AT X S
which is given by
1
(7.6) 6(tx, y, z) = (1 - t))?y, tx(2), 2).
Clearly 6 induces a map

(C (On,k) X B(V), C(On, k) X S(V) UOn, X B(V))=(B(VénL), S(VénL))

k
and hence a map

(€ (On, k)/On, W 7 (B(V)/S(V))=B(V&nL)/S(VSnL).

In other words 6 determines a map
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6150, )~ Pk-»PV@“L

We refer to this as the intrinsic map of the second type.

Now suppose that O n,k admits a cross-section f S -0

We already know, from (7. 1) and the results of §5, that PV and
V@nL
k

by proving

n, k'

have the same S-type, but now we can make this more precise

Proposition (7. 7). The composition

\' VéénL

f'=9(5t~1): S(S)/\ Pk -’Pk

is a homotopy equivalence,

The proof proceeds by induction on k. When k =1 the domain
and codomain are spheres and it is easy to see that ¢ has degree 1.
Let k = 2, and suppose that (7. 7) is true with k - 1 in place of k,
W=V|P_, inplaceof V, and g=pf:S_ =0, .1 inplaceof f.
Now f' determines a homomorphism, raising dimension by dn, of the
homology exact sequence of the pair (PV w ) into that of the pair

VénL _WénL Pl

(Pk Pk 1 ). This is an isomorphism of the relative groups, by
another degree argument, and f, agrees with g, on the subspace.
Hence the inductive step follows using the five lemma. Full details for
the case when V is a multiple of L are given in [69]. In a sense (7.7)
is a homological counterpart of (2. 7), the generalized Freudenthal

theorem, A very similar argument leads to

Proposition (7. 8). Suppose that there exists a retraction

VénL
p: Pk - Sm+n’

where m = dim V. Then

. v
po S(On, k) ~ Pk g Sm+n

restricts to a duality map

\'
5@y 1) ™ Py = S
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Corollary (7.9). If m + n=k mod tk then Pm

are S-dual,

k04 Q.
The latter also follows from Atiyah's duality theorem [7] for
Thom spaces of vector bundles over a manifold. However, the rather

specific form of duality map given here enables us to prove

Proposition (7.10). If m = 0 mod tk and m = 2k then
dm . dm
S Qn,k is a retract of S 0n

K
Corollary (7.11). If n=k then Qn,k is an S-retract of On,k'
We take V= (m - k)L ®L' so that
9 S(On,k) ~ Qm,k -’Qm+n,k'
The hypothesis ensures the existence of a section g : Sm - Qm,k’ and

hence a map

g' =901~ 8):80, )8, 2 Qup ke
Now an argument similar to the one used for proving (7. 7) (see [69] for
details) shows that

g": S(Qn, k) ~ Sm - Qm+n,k

is a homotopy-equivalence, where g" denotes the restriction of g'.

By composing g' with a homotopy inverse
Qm+n, k - S(Qn, k) ~ Sm

of g" we obtain a retraction
S(On,k) ~ Sm - S(Qn, k) ~ Sm’

as required. Thus there exists a number r, depending on k but not

on n, such that SrQn K is a retract of SrOn It would be interesting
»

=
s

to know something about the least number e with this property. For
example, is . bounded? And how is ) related to r

to see that rk> 0 when k = 2, also r, > d.

’ .
Kk’ It is easy

50



It seems likely that there is some relation between our map

¢: S(On,k) ~ Qm,k -’Qm+n,k
and the intrinsic map

h:0 *x O -0

n,k m,k m+n, k

of §2, but so far as I know this has not been investigated.

These relationships can also be discussed from the homotopy-
equivariant point of view, as follows. We take the real case, Consider
the self-map dr (r=1, ..., n) of Pn Kk given by reflection in the
hyperplane of the rth coordinate, Cleariy dl, ey dn—k belong to the
k41 Tt dn belong to the

same homotopy class 3, say. Also an-k = Bk, since changing the sign

same homotopy class «, say, while d

of all the coordinates gives the identity self-map. It is clear from the

general discussion in §6 that if P is regarded as a Z -space with

n, k
action of type « then the stable homotopy Z type depends on the

residue class of n mod A, while if P is regarded asa Z2 space

with action of type B then the stable hrc:;rll{otopy-z2 type depends on the
residue class of n mod ﬁk To discuss the duality law we return to

(7. 8) with m + n =k mod ék’ and choose p to be a homotopy-equivariant
retraction of the Thom space of (m + n - K)L, over Pk'1 with Zz_
structure as before. We deduce that P m, k with B-structure is S-dual

to P n,k with ap-structure, In this sense the dual of 8 is afB, hence
the dual of af is B, hence the dual of a = (aB)B is B(aB) = a. Other

ways to obtain these relations are given in [82] and [85].

Finally, let us regard Pn gk 252 subspace of Vn X’ For
1
r=1, ..., n-k the self-map dr of P extends to the self-map of
’
v which changes the sign of the r ™ row, while for r = n-k+1, ..., n
n k ’

4

it extends to the self map of V which changes the sign of the rth row

n,k
and (r - n+ k) column, If we regard (Vn, K Pn,k) asa Zz-pa1r,

in one of these ways, then the argument used to prove (7. 11) shows that

p isa homotopy-Z2 retract of V

n,k n, Kk’
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8-Relative Stiefel manifolds

This section is based on a recent article [83], By the relative

Stiefel manifolds I mean the pairs of spaces

] — 1 —
Wk = Vo oo W1 X k= Wop o X )

Inwhat follows I will concentrate on the former, leaving the corresponding
results for the latter as exercises.

There is a notable formal analogy between the relative homotopy
groups of Wh,k and the absolute homotopy groups of Wn,k' To see
this, consider the factor space I‘n = 02n/Un (n=1, 2, ...), with
the obvious embeddings I‘1 c I‘2 C ... . The triad homotopy group

7_(0

T 2n; Un’ 0

2n- 2k)

can be identified with the relative homotopy group
7020/ Uy Cop-2k/Vnoi)

on the one hand, or with

7Tr(o2n/02n-2k’ Un/Un-k)

on the other. Thus we can identify
1 —
7Tr(Wn,k) - 7Tr(rn’ Lo

If 1 =1 <k, therefore, the homotopy exact sequence of the triple

(I‘n, rn-l , rn-k) can be written in the form

1 u'* 1 p'* 1
- -
T W k) T W) T W )

where u' denotes the inclusion and p' the natural projection.
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Note that the inclusion

'\ - (V vvn,l)

on-1,1, © 2n,2’

induces an isomorphism
2n-2, '
ﬂr (S ) ﬂr(wn, 1)?

X 2n-2
for all values of r. The image of the generator Lo € 772n_2(S )

will be denoted by Kopo € T e 2(W 1). By a relative cross-section of
1 1
Wn x We mean an element of L 2(W k) (or the representative of
such an element) which projects into K2 -2 under
1 : T W' - T W'
Pyt o o Wh i) ™ Ton oWy, 1)-

For example, take n =k, Then the relative Stiefel manifold

W;l, n= (0 , U )2 agmlts a relative cross-section if and only if the
fibration I‘n =+ 57" ° admits a cross-section in the ordinary sense,
i.e. if and only if n =2 or 4 (see [26]). It would be interesting to know,
incidentally, whether there exist fibrations of I‘n with fibre I‘n_k

for k = 2; presumably not.

We have already noted that V2n ok admits a cross-section if
w does. It is also true that V ' admits a cross-section if
n, k 2n, 2k
w! admits a relative cross-section, thus generalizing the result of

n,k
Kirchhoff [93] (the case n=k). One way to see this is to consider the

family of maps
B: T =-QR
n 2n
given for x € 02n and t €I by the commutator

B(xUn)(t) =[x, e cos mt + b sin 7],

where

01

©...8(, o

(n summands).

The maps B are compatible, for various n, and so determine a homo-

morphism
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B* : 7Tr(rn’ I‘n-k) - 7Tr+1(R2n’ R2n-2k)’

for all values of r. A straightforward calculation (see [75] for details)

shows that

B r,T

* 772n-2( n-l) - ﬂ2n-1(R2n’ R2n-2)

maps K, 2 **on-2

By naturality, therefore, B, transforms relative

onto an element B_« such that p*B*K2n_2 generates

772n- 1(R2n’ R2n- 1)'

cross-sections of W' into cross-sections of .
n,k V2n, 2k

It is easy to check that the diagram shown below is commutative,

where the verticals are inclusions and the horizontals are intrinsic maps.

w w

m,k * Wn,k ~ Wm+n,k

! |

Vom,2k*V v

-
2n, 2k 2m+2n, 2k

Hence the relative intrinsic map

. 1 ]
h: Wm,k* Wn,k -’Wm+n,k

is defined, and hence the relative intrinsic join. This construction has

properties analogous to those found in the ordinary case. For example,

the relative intrinsic join of a cross-section of Wm Kk and a relative
’

cross-section of W! is a relative cross-section of W! . Hence
n, k m+n, k

and from the results ,of §5 we obtain

Proposition (8.1). The relative Stiefel manifold W;l " admits
’

a relative cross-section if k=1 or

k=2 and n=0mod?2, or
k=3 or 4 and n =4 mod 24.

In §10 below we shall prove

Theorem (8.2). The relative Stiefel manifold W;l Kk admits no
td

relative cross-section unless n and k are as in (8. 1),

In particular, W;l Kk admits no relative cross-section for k > 4,
’
One of the main steps in the proof of (8. 2) is
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Theorem (8. 3). If the relative Stiefel manifold W' X
a relative cross-section then the sphere-bundles S((n - 1)C '® (L ®L))

admits

and S(nL) have the same fibre homotopy type over Pk(C).

The spheres S(Rzm) (m=0,1, ...) obtain s'-structure
thr ough S(Cm), as before. Thus elements of V determine S°-
k-1, 2n-1 2n, 2k

i C -
maps of S into S , while elements of Wn,k V2n,2k deter

mine S'- maps. Any map

2n-2, 82

s: (B n-3)-’(V

2n, 2k’ Wn, k)
determines a map

g - B2n-2x st x S2k-1 USZn-Bx B2 ><SZk-l_’SZn-l>< S2k-1

as follows. Since s(x) = Sy is an So-map for all x € an'2 we define

s'(x, v, v) = (usx(u-lv), v) wes', ve SZk-l).
2n-3 . 1 .
If xeS then S, is an S"-map and so s(x,u, V)= (sv v). We

therefore complete the definition of s' by defining

2n-3 2 2k-1

s'(x, uz,v)=(sxv,v) x €S ,u€B", veS ).

Notice that if s'(x, u’, v) = (y, v), where y € SZn-l, then
s'(x, uzzz, vz) = (yz, vz), for any z € S'. Hence s' determines a

fibre-preserving map
h:8S((n-1)C & (L ®L)) = S(nL).

I assert that h is a fibre homotopy equivalence if the original map s
is a relative cross-section.
Perhaps the easiest way to see this is to pull the situation back

to real projective space through the standard fibration
t: PR = p(cK).

Let L C denote the canonical complex line bundle over P(C ) and LR
2k

the canonical real line bundle over P(R”"). The real bundle underlying
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f*LC is 2LR,

Thus h pulls back to a fibre-preserving map

while the real bundle underlying f*(LC ® LC) is 2R.

h' : S(2nR) = S(2nL),

over P(R2k). The degree of h' over the point-space P(Rl) is easily
computed to be 1, as in the proof of (7.1). Hence h has degree %1

on the fibres and (8. 3) follows from Dold's theorem. In fact h' can be
identified with the fibre-preserving map corresponding to s', the cross-

section of V determined by s as described above. An alternative

2n, 2k
proof of (8. 3) can be found in [83].

It turns out, as we shall see, that the converse of (8, 3) is also
true, although it does not seem easy to establish this by either of the

methods used in §7,
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9-Cannibalistic characteristic
classes

In this section we shall complete the proof of (1. 2), following
Bott [31] and Adams [3], and go on to complete the proof of (1.10) by
the same method, We begin by summarizing the relevant theory.

Let V be a euclidean bundle over a space X, If V is J-trivial

then the Thom space XV

is S-retractible, as we have seen. Hence by
computing the Steenrod squares in the cohomology of XV we can expect
to obtain some information about the J-order of V. A more direct
approach, however, is to calculate the Stiefel-Whitney classes of V in
the cohomology of X, since these must vanish if V is J-trivial. The
link between these two approaches is given by the theorem of Thom [140],
which expresses the Stiefel Whitney classes of V in terms of the action
of the Steenrod operations in the cohomology of XV, using the Thom

isomorphism

m+n(XV)

g™ (X) = (n = dim V),

In K-theory the position is similar. By computing the Adams Y- operations
in f{R(XV) we can obtain some information about the J-order of V, but
there is also a direct approach which involves calculating certain
characteristic classes of V, with values in KR(X). To define these
cannibalistic classes, as they are called, we need the Thom isomor-
phism theorem of real K-theory and for this certain restrictions on V
are necessary.

Recall that V admits spin-structure if the Stiefel-Whitney classes
W1(V) and wZ(V) both vanish. Let us say that V is admissible, in the
present context, if V admits spin structure and n = dim V is a multiple
of 8,

Since XV = B(V)/S(V), by def1n1t10n we can identify KR(X )

with KR(B(V), S(V)). Thus KR(X ) becomes a module over KR(B(V))

57



and hence over KR(X), through the homomorphism p* induced by
p:B(V)=X. If V is admissible then the Thom isomorphism

=0 - & xV
¢—¢V  Kp(X) = Kp(X7)
is defined, as in [32], and is an isomorphism of modules. Moreover the
‘cannibalistic' characteristic class pt(V) € KR(X) is defined by

9.1 ot =9wleq)  (tez).

Since ¢ reduces to the periodicity isomorphism when V is trivial it
follows that

©.2) P =t"?  @=0mod8s)
Following Adams in Part II of [4] we now prove

Theorem (9. 3). Let U, V be admissible bundles over X such
that S(U), S(V) have the same fibre homotopy type. Then

. Yla+n=p". 0 +x

for some element x € I~{R(X).

The argument is similar to Thom's proof [140] that Stiefel-

Whitney classes are invariants of the J-type. To simplify notation we

will omit the index t. Givenamap h: XU nd XV I assert that

(9.4) y. p(V)=pU). ¥y),

where y = ¢1-11h*¢V(1) € KR(X). For since h* commutes with ¥ we
have at once

(9 o) 07 Why) = (95 wo) (05 broy).
Evaluating at the identity of KR(X) this yields
(0 h*6y) . P(V) = (9 woy) . v.

However since ¢U’ ¢V and h* are morphisms of modules this can be

rewritten
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-1, _ 41
(b DL . P(V) = 67 W(By(D) .+ )
= oy Vo) - ¥E),

since ¥ is a ring homomorphism, and so (9. 4) is obtained.
Now suppose that h is given by a fibre-preserving map
S(U) = S(V) of degree d, say, on the fibres, Then b*(y) = d, where

b* : Ko (X) = Ko (pt) = Z,

is induced by the inclusion of the basepoint. Thus y - d lies in the
kernel f{R(X) of b*, When d =1 we multiply (9. 4) by d and obtain
(9. 3) with x =yd - 1. Note that 1 + x is invertible, either for alge-
braic reasons or from consideration of the inverse fibre homotopy

equivalence, Thus (9.2) and (9. 3) imply

Corollary (9.5). If S(U) is trivial, in the sense of fibre

homotopy type then

t
t._.n/2 Y1 +x)
PU=" x>

for some x € f{R(X), where n = dim U,

It turns out that pt has the property that
t t t
(9.6) p(USV)=(pU). (pV),

for all admissible line bundles U, V., Moreover a straightforward cal-

culation using representation theory (see [4]) shows that

9.7 pt(nI_,) =% 4 étn/z([L] -1) (t even)

=24 12 p(L]- 1) (¢ odd),

for any line bundle L and n = 0 mod 8.
For example, take X = PX ! with L the Hopf line bundle,
Recall that f{R(Pk'l) is cyclic of order a andthat a =[L]-1 is

a generator, We are now ready to prove that
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0.8 7:K (P =@,

For this it is sufficient to show that the order of J(a) is - The first

step is to use Stiefel-Whitney classes., Since
n, m
wo (L) = (1™ m=1, 2, ...),

where a generates Hl(Pk'l), this shows (cf. (1. 6)) that the J-order of
L is divisible by 2*, where r is the least integer such that 2* = k.
This proves (9. 8) for k =4 and shows, for k = 5, that the J-order of
o is a multiple of 8, Let k = 5, therefore, and suppose that nL is
J-trivial, Then n =0 mod 8 and so (9. 7) applies. Let t be odd, so
that wt acts trivially on f{R(Pk'l). After increasing n by multiples
of A if necessary, the sphere-bundle S(nL) will be trivial, in the

sense of fibre homotopy type, and so

L% - na =y,

by (9.5) and (9. 7). Take t = 3, in particular, and use (1, 9) as before.
We conclude that n/2 is an even multiple of 20(k)-2, hence n isa
otk) =2,. This completes the proof. Finally we obtain

(1. 2), Adams' theorem, by combining (7. 2) and (9. 8).

multiple of 2

Turning to the homotopy- equivariant problem, recall that i’k_l

is constructed from Pk' 1 with respect to reflection in the hyperplane of
of the last coordinate X - Let i’k be constructed from Pk with res-
pect to reflectlon in the hyperplane of the same coordinate X - Then

~k-1
P C P with inclusion u, say, and we have an exact sequence

2k ~k-1

u A
Ko (B9 - K BF L 2 K2 (s(B* /B ).

Let k = 0 mod 4. Then the group on the right is cyclic infinite, since
~k k-1 Sk+1VSk . :

P /P has the homotopy type of , while the group in the
centre is finite, Therefore u* is surjective, Now the action on Pk

is neutral, since k is even, and so i’k has the same homotopy type as
PX x §'. Hence it follows, after a little calculation, that y' (t odd)
operates trivially on RR(f’k) and hence on kR(i’k_l). Now apply (9. 5)

and (9. 7), just as before. We conclude that the J-order of L over Pk
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is a multiple of ak 1= 2ak. Taken with our previous results, this

proves

Proposition (9.9). The J/Zz—order ék of the Zz-line bundle
L over PX! is given by & =2, =23 when k=2 or k=0mod4,
by ék = a,  otherwise,

Hence and from (7. 4), (1.10) follows at once.
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10-Exponential characteristic
classes

In this section and the next we shall be studying the problem of
the existence of cross-sections for complex and quaternionic Stiefel
manifolds, As we have seen, this depends on a knowledge of the J-order
of the canonical line bundle over the appropriate projective space. Al-
though in principle this can be determined by means of the cannibalistic
classes of §9, the calculations involved are formidable. It turns out to
be far more convenient to use what Adams calls the Bernoulli class bh
in the complex case, and the hyperbolic class sh in the quaternionic.
The applications will be given after we have discussed the basic proper-
ties of these two exponential characteristic classes.

In what follows we shall be working with both real K-theory KR

and complex K-theory K The homomorphisms

c
< Ry Cy Ty
- - -
KoX) = Kp(X) = K (X) = K, (X)
are important, where R " is given by the underlying real bundle, C#
means tensoring with C, and T 4 denotes complex conjugation. Recall

that
(10.1) R,C,=2, CR,=1+T, T,C,=C,

We shall need a few basic facts about the K-theory of projective spaces,
which can be found in 82 of [5] and §3 of [123], First, the Chern

character shows that
(10.2) K, (P, (C)) = Z[8] mod 8",

where 8=[L]-1 and L= L. 1s the Hopf line bundle. Next, a
spectral sequence argument (for example) shows that R #B generates
f{R(Pk(C)), and so
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(10.3) R #f{C(Pk(C)) = RR(pk(C)).

More detailed calculations, as in [5], show that the sequence

~ Cs 1-Ty .
(10.4) Kp(P,(C)) = K, (P(C) = K(P(C)

i

is exact, Turning to the quaternionic case, let LC denote the complex

2-plane bundle underlying the Hopf bundle L = L_. over Pk(H). The

H
Chern character shows that

(10.5) K (P, () = Z[»] mod 7",
where y = [LC] - 2, and moreover
(10.6) gry= (1 + TyB,

where g : P2k(C) - Pk(H) denotes the standard fibration. Finally, we
have

Proposition (10. 7). The homomorphism

Cy : Kp (P (H)) = K (P, (H))

is injective, with image the subring generated by 2y and 'yz.

For any finite complex X the Adams Bernoulli characteristic

class is a homomorphism

bh: Ko (X) =1+ 3 12 (X; Q)
s>0

from the additive Grothendieck group of complex vector bundles to the
multiplicative group of rational cohomology in even dimensions with
augmentation unity., Such a homomorphism is called exponential and is

determined by its value for line bundles. In the case of bh the value is
(10.8) bh(L) =@ - 1)y,

where y = cl(L) is the first rational Chern class of any line bundle L.
Alternatively bh can be defined by taking the Chern character

in the Thom space. To be precise, let V be a complex vector bundle
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over X. Then
(10.9) bh(V) = ¢ 'ché(1),

as shown in the following diagram where ¢ denotes the Thom isomor-

phism for both complex K-theory and rational cohomology.

K (X) H*(X)

N |

KC(XV) —_ I~{*(XV)
ch
The equivalence of these two definitions follows from (14. 3) of [9].

Using the latter version we can apply the Thom invariance argument,

as in the proof of (9. 5), and obtain
Theorem (10.10). If £¢ KC(X) is J-trivial then
bh(£) € ch(l + f{C(X)).

Following Adams and Walker [5], let us say that £ is Jb-trivial
if the condition in (10, 10) is satisfied, and define J' (X) to be the factor

group of KC (X) by the subgroup of J! -trivial elements.

C
For example, take X = Pk(C), where k = 2, The integral co-

homology ring is given by

H*(P, (C)) = 2Z[b] mod b,

where b=c (L) is the first Chern class of the Hopf line bundle L,
Regarding b as a rational class we see at once that chB] b] modulo
higher powers of b, for j=10, 1, ... . Thus any element of

H*(Pk(C); Q) has a unique expression of the form
0 1 -1
pochﬁ + plchﬁ +... + pk_lchﬁ’k R

with rational coefficients Py Py ooees Py_qe Moreover the element lies
in the image of

64



ch 1 1+ K (P, (C) > H¥(P,(C); Q)

if and only if all these coefficients are integers, Write y=chg= eb -1,
so that b = log(l + y), defined by its usual power series expansion.
Then

log(l + y)\n
’

b
bh(-nL) = (& 1y "= (
b v

for any n = 0, and so we obtain

Theorem (10.11). The element np € f{C(Pk(C)) is Ji.-trivial if

and only if the coefficients of yl, ceey yk-1 are integers in the expansion

of

log (1 +y).n
=)
y
Combining this with (10. 10) we obtain a necessary condition for

nB to be J-trivial and hence for W to have a cross-section, by (7. 2).

In the next section we shall show, frc:hl;wing Adams and Walker, that the
necessary condition is also sufficient. It was Atiyah and Todd [11] who
first showed the condition to be necessary, using a straightforward Chern
character argument, and they went on to translate the condition into
another form as follows. For any prime p and integer x let vp(x)

denote the exponent of the highest power of p which divides x. Let

b (k=1,2,...) denote the Ji-order of B ¢ f(C(Pk(C)), as determined
by (10.11), Atiyah and Todd show that bl'{ is explicitly given by
(10.12) v b')=sup(r+v (r)) (I=r= [k—-l])
Pk r P p-1

Thus bi =1, b'2 =2, b'3 = b:‘ = 24, and so forth. Furthermore

(10.13) b, =b (k odd, k> 1).

For if not then m' + vp(m') > m+ vp(m), for some prime number p
such that

m'

Il
ST
!

\Y

|
ST
:
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The latter condition requires k to be a multiple of p - 1 and hence

p =2, since k is odd. But then
m'=k, m=k- 1, VP(m') =0, VP(m) =1,

and the former condition is violated.

Another application of the Adams-Bernoulli class is provided by

Theorem (10, 14), The complex vector bundles L ® L and nL

over Pk(C) are Jb-equivalent ifandonly if k=1 or

k=2 and n=0mod 2, or

k=3o0r 4 and n=4 mod 24,

By (10. 10) these are necessary conditions for the bundles to be

J-equivalent, and hence for the relative Stiefel manifold W;l Kk to have
’
a cross-section, by (8, 3). Thus (10. 14) implies (8. 2).
To prove (10. 14), observe first that bh(L ® L) = (2P - 1),2b,

by (10. 8). Hence
2b b
_© -1 - 1-n
BhL @ L - nL] = G ) E)
_ ¥ylog(l + y)\n-1
=1+ HEE-TY

i

by the exponential property, where y = eb -1. Thus L®L and nL
are Ji-equivalent if and only if the coefficients of v, ..., yk'l are
integers, in the expansion. The coefficient of y1 is 1-n/2; thus n
is even if k = 2. The coefficient of y2 is (n- 1)(3n - 4)/24; thus
n=4mod 24 if k=3, The coefficient of y’ is (1 - n)(n’+6n-8)/48;
thus n =4 mod 24 if k = 4. Finally, the coefficient of y4 is the
quotient of

r(n) = 15n" + 30n” + 5n° - 18n - 32

by 5.9.128, If n =4 mod 24 then since n’ =0 mod 16 we have
r(n) = 8 mod 16, so that the quotient cannot be integral. Thus k =< 4
and the proof of (10. 14) is complete.

In these examples it turns out that the J-order and the J' -order

C
are equal, but in general this will not be so; quaternionic projective
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space is a case in point. To deal with this Adams has introduced another
exponential class, as follows.

The Adams hyperbolic class is a natural homomorphism

sh:K (X) =1+ 3 H'SX;Q),

s>0
from the additive Grothendieck group of real vector bundles to the multi-
plicative group of rational cohomology with augmentation unity in dimen-
sions divisible by 4, The homomorphism is exponential with defining
property

(10.15) sh(R,L) = (e%y - e-%y)/y,

where y denotes the first rational Chern class of L. The connection

between bh and sh is given by
1
(10.16) bh(#) = 2“1 Isn(R b)

where £ € KC(X). This is clear enough for line bundles and hence is
true in general by the theory of exponential classes.
Just as in the case of bh there is an alternative definition in

terms of the appropriate Thom isomorphism which implies
Theorem (10,17). I £fe€ KR(X) is J-trivial then
sh(£) € chCy(1 + Ko (X)),

Let us say that £ is Jh—trivial if sh(&) satisfies the condition

in (10, 17) and define Jh(X) to be the factor group of KR(X) by the sub-

group of Jh-trivial elements, Of course Jh(X) can also be regarded
as a factor group of J(X).
Let f¢ KC(X) be an element such that R#§ is Jl':{-trivial. In

'c-trivial. Suppose, however, that cl(é) = 2h for

some h € HZ(X). Then h = cl(n), for some complex line bundle 7,
and then ch(y) = exp(%cl(é)). Thus if

general £ isnotJ

shR#§ = chC#(l + 0),
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for some 6 € RR(X), then

bh(&) = ch(n)ch(l + C#O)

chn (1 + C,6) = ch(l + 0",

where 60'=-1+ 5(1 + c#e) € f(C(X). Therefore £ is Jb-trivial if
Ryt is Jp-trivial and ¢ () € 2H? (X).

R
For example, take X = Pk(C). I assert that R#§ is Jh-trivial
if and only if £ is Jb-trivial, for all £ e KC(Pk(C)). To prove 'only if’

we use the above argument; a short calculation shows that the further
condition is automatically satisfied when R #g is Jh-trivial. Conversely,
suppose that £ is Jb-trivial, so that

ch(l + 6) = bh(%) = exp %cl(é)sh R &,

for some @ € f(C(Pk(C)). Comparing terms in dimension two we see that
%cl(ﬁ) = 01(0) = c1(¢), for some complex line bundle ¢, and hence
sh(R#g) = ch(l + ¢), as before, for some Y € KC(Pk(C)). The proof is
completed by showing that T, =Y andso ¥ eCKR(Pk(C)), by (10, 4)
above. To see this, consider the self-map T of Pk(C) given by com-
plex conjugation, Since T* = T, on the Hopf line bundle it follows that

#
T* = T, on any element of f(C(Pk(C)). Thus

R#g = R#T#g = R#T*g = T*R#g,
and so

ch(l + y) = T*ch(1 + ) = ch(l + T*y) = ch(1 + T#J,l/).

Therefore v =T #yt/, since the Chern character is injective, and the

proof is complete, Combining this with (10, 3) we see that
(10.18) Ji%(Pk(C)) = Jb(Pk(C)),

for all values of k. The same is true with P, replaced by P

k K2 &

odd), by a very similar argument.

68



While retaining the Jb notation, from now on we shall write J'

instead of Jh. This agrees with the usage of Adams and Walker [5],

also Sigrist and Suter [130], but not the usage of Adams in [4].
For our last example we take X = Pk(H), where k = 2, Recall
that

H*(Pk(H)) = Z[c]mod ck,

where c¢ generates H4(Pk(H)). We choose ¢, as we may, so that ¢

maps into b’ under the homomorphism

g* : H(P, (H)) = H*(P,, (C))
induced by the standard fibration. Now

g* Ry = Ryg*y = Ry(B + T B) = 2R 45,
by (10.1) and (10. 6). By definition

sh(R,p) = (7% - e ™*/%) b = 25h(b/2).

Hence and from (10. 7) it follows just as in the complex case that any

element in the image of
grteoche Cy=chegroCy=Kp(P (H)=H*P, (C);Q)
has a unique expression of the form

k-1
2

q.e.[25h(b/2)]2j,
j=0 11

with rational coefficients Qs Dys oves Ue_ys where ej =1 or 2 accor-

ding as j is even or odd, Moreover the element lies in the image of

g* e ch e Cy:1+Kp(P (H) = H*(P, (C);Q)

if and only if all these coefficients are integers. Write b = 25h'1(Jz /2).
Then
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g*sh(-n. Ryf) = Fhl()m)Zn =72_ -1(w/z)

for any integer n, and we obtain

Theorem (10, 19), The element ny € f(C(Pk(H)) is J'-trivial if

and only if the coefficients of zl, ceey zk-1 in the expansion of

—1Jzn
T ()

are integers or even integers according as the exponent of z is even

or odd.

Combining this with (10, 17) we obtain a necessary condition for
ny to be J-trivial and hence for Xn,k to have a cross-section, by (7. 2).
This result is due to Sigrist and Suter [130] who show, moreover, that
the condition is sufficient, as we shall see in the next section. Sigrist

and Suter go on to show that the Jb-order cl'{ of ye KC(Pk(H)), deter-

mined by (10, 19), is explicitly given by

Vz(cl'{) = sup(2k -1, 2r + vz(r)) 1=r<k),
(10, 20) {
vpley) = vy ) (p odd).

Comparing (10. 12) and (10, 20) we see that cl'{ Dk

or b! for any given value of k. The latter alternative always holds

2k /2’

when k is odd. It also holds for some of the even values of k, begin-

is equal to either b

ning with k = 10, An interesting statistical analysis of the situation is
given at the end of [130],
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11: The main theorem of J-theory

The purpose of this section is to determine the J-order of the
Hopf line bundle over complex and quaternionic projective space and then
use (6. 2) to deduce the cross-section theorems of Adams-Walker and

Sigrist-Suter for the corresponding Stiefel manifolds, We require

Theorem (11, 1), For any x € KR(X) and integer t there

exists an integer e such that

et - 1x

is J-trivial.

This famous result was conjectured by Adams [4], who proved
it in some special cases. The first proof of the theorem itself was given
by Quillen [117], using methods inspired by algebraic geometry, Sub-
sequently Becker and Gottlieb [21] have given a proof within the frame-
work of conventional algebraic topology.

In view of (11, 1) we follow Adams [4] by defining a functor
J"(X) as follows. Given a function f which assigns to each integer t
a non-negative integer f(t), let W(f, X) denote the subgroup of kR(X)

generated by the elements
tf(t)(;,t/t - 1)x (x € f{R(X), t €27).
Then we define J"(X) = RR(X)/W(X), where
W(X) =fﬂ w(t, X),

taken over all such functions f, Even without using (11. 1) many useful
results can be proved about J"(X), as in Part II of [4]; for example J"(X) is

a finite group. However (11, 1) shows that J(X) can be regarded as a
factor group of J"(X). The main theorem of J-theory is
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Theorem (11.2). The natural projection

" IN(X) = J(X)

is an isomorphism,

This is a combination of (11. 1) and another result of Adams,
proved in Part IIT of [4]. In principle, therefore, the calculation of the
J-order of an element of f(R(X) can be carried out, once the action of
the y-operations is known, In practise, however, the calculations
present formidable difficulties, even for such convenient spaces as the
complex projective spaces. To get round this the procedure is to con-
sider the composition of the natural projections

o 0
I"X) = IX) = J'(X).

Neither J"(X) nor J'(X) is particularly difficult to compute when X

is a sphere or complex of a simple form. Let us say that X isa J'-
space if 0' e 0", and hence 0' is an isomorphism. Adams makes some
calculations in Parts IT and IIT of [4], which we shall omit, and shows
that S4q is a J'-space for q = 1. Furthermore the mapping cone

e4q U S4q-2 4q-2

of the generator 1 of 7 ) is a J'-space for

(S
4q-1
q = 1, These results will be used later.

Both J' and J" have a limited exactness property, as shown by
the following three results from [4] and [5]. Let X, Y, Z be finite com-

plexes and let
i j
X =Y =127
be a cofibration, with inclusion i and projection j. We prove

Proposition (11, 3). Suppose that both

ch : KC(X) = H*(X; Q), j*:H*(Z; Q = H*(Y; Q)

are injective, Then

j* 2 35(2) = 3L (Y)

is also injective.
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For let £ € KC(Z) be an element such that bhj*& = ch(1l + 6),
for some 0 € f(C(Y). Then

chi*(l + 6) = i*ch(1 + 6) = i*bhj*¢
bhi*j*£ =1,

since i*j* = 0, Therefore i*(1 + ) =1 andso 1 + 6 =j*(1 + ¢),

by exactness, for some ¢ € f(C(Z). Therefore

j*bh(£) = bh(j*£) = ch(1 + 6)

chj*(1 + ¢) = j*ch(1 + ¢).

Hence bh(&) =ch(l + ¢) andso ¢ is Jb-trivial, as asserted. A very

similar argument proves

Proposition (11. 4)., Suppose that both

chCy : Kp(X) = HX(X; Q), j*: H¥(Z; Q) » HX(Y; Q)

are injective, Then

J* 1 Jp(Z) = Jp(Y)

is also injective,

Finally we turn to J" and prove
Proposition (11, 5). Suppose that the sequence

N i* i*
Kp(@) = Rp(V) = R0 =0

is exact., Then the sequence

j* i*
JNZ) = J"Y) = I"(X) =0
is also exact,

Recall that J"(Z) is finite, Choose a finite set (zl, ceoy Zq)
of representatives in kR(Z) for the elements of J"(Z). Suppose that
y € f(R(Y) is an element such that i*y e n W(f, X). I assert that for

f
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each such f there exists an element z, such that y- j*zr ewW(, Y).
By hypothesis there exists a set of elements x, € f(R(X), of which

all but a finite number are zero, such that
iry = 20Ot - 1x,
t

Since i* is onto we can find Vi € f(R(Y) such that X = i*yt and v = 0

whenever X, = 0. Then

{0t

y-2 - )y
" t

lies in the kernel of i* and so equals j*z, by exactness, for some
7 € f(R(Z). However J"z = J“zr, for some representative z_. Since
z -z, € W(X) C W(f, X) we have

z-z_ =2 tf(t)(yt/t - Dz},
roy t
L s
where z} € KR(Z), and hence
y =iz + 3Ot -, + ie2.
roy t t

Thus y - j*zr- € W(f, Y), as asserted.

Moreover there exists a representative z, which satisfies this
condition for all such functions f. For if not then for each representa-
tive z, there exists a function fr such that y - j*zr ¢W(fr, Y).

Define a function f by

f(t) = sup f_(1);
1Sr5qr

then for each r we have y - j*zr £ W(f, Y), contrary to what has

already been established, We have shown, therefore, that
y - j*z, € W(Y)

for some r, thus J"y = J"j*zr = j*J"zr. The rest of the proof of (11, 5)
is obvious.
Recall that X is a J'-space if

9=10"00":J"X) = J'(X)
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is an isomorphism, We prove

Lemma (11.6), If k is odd then Pk(C) is a J'-space.

The result is trivial when k =1, Let k = 3, therefore, and
suppose that the result is true with k - 2 in place of k., Consider the
cofibration

i J

Pyo(©) = PL(C) = Py ,(C),

which gives rise to the following commutative diagram.
j* j*

(B, L) = (RO = Iy ,(C) =0

U

'@ L) > I(RC) = T (P_,(C)

The upper row is exact, by (11,5). Also j* in the bottom row is injec-
tive, by (10, 18) and (11, 3), Also Pk, 2(C) is a J'-space, as noted
above, and Pk_2(C) is a J'-space, by hypothesis. Therefore Pk(C)
is a J'-space, and (11, 6) follows by induction, The corresponding

result for even values of k is

Lemma (11.7), If k=0 mod4 then Pk(C) is a J'-space. If
k =2 mod 4 then either Pk(C) is a J'-space or ker 6 = Zz’

This time we consider the cofibration
i

j
P, 1(C) = P (C) = P_,(C)

k,1

which gives rise to the following diagram,
]'* j*

I 1) = TR = TP (C) =0

b e

'Ry 1(0) = T (PC) = IR ()

The upper row is exact, by (11, 5), and the right-hand 6 is an isomor-
phism, by (11, 6). Hence the kernel of the central 6 is contained in the

image of the upper j*, Now Pk 1(C) is a (2k - 2)-sphere, and so
b4
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I~((Pk 1(C)) is Z2 or zero according as k =2 or 0 mod 4, This proves
4 -

(11.7). When k =2 mod 4 it can be shown, as in §6 of [5], that R#ﬂk 1

is J'-trivial but not J"-trivial; thus R#ﬂk_l

This complication does not arise in the quaternionic case, where a

generates ker 6 = Zz'

straightforward induction with reference to the cofibration

4k-4
Py (H) > P () =P (H) =S

leads immediately to

Theorem (11, 8), If k =2 then Pk(H) is a J'-space.

We are now ready to determine the J-order of ek (P, (C)
Ck

and the J-order ¢, of y € f(C(Pk(H)). I assert that

(11.9) hk=bl‘{, ck-cl‘{,

for all values of k, where bl‘{ and cl‘{ are the numbers defined in 810,

Using the main theorem of J-theory this follows from (11.6), (11.7) in
the complex case when k # 2 mod 4, and from (11, 8) in the quaternionic
case, For the complex case when k =2 mod 4, write k = 27, where !
j - h! t soos

is odd, Then bk = bk or 2bk’ by (11. 7). But bk/2 divides ¢
and cz = b]‘{/2, as noted at the end of the last section. Therefore

=c2

bk = bl'{ in this case also and the proof of (11.9) is complete, Hence

and from (7, 2) we obtain

Theorem (11, 10)., The complex Stiefel manifold Wn Kk admits
td

a cross-section if and only if n =0 mod b The quaternionic Stiefel

Kk’
manifold Xn Kk admits a cross-section if and only if n = 0 mod Cyr
- ’

Here bk and Cper after (11, 9), are given by (10, 12) and (10, 20),

Another application of the main theorem of J-theory is to prove

Theorem (11, 11)., If the fibration W -Ww admits a
——FF "n,k n,1 ——

cross-section then it admits a homotopy-equivariant cross-section.

Consider, to start with, any pointed Z ,~space X, The mapping
torus X of X contains, as a retract, the mappmg torus S' of the

basepoint, Choose the obvious retraction r : X -g! , which is constant
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on X, and consider the diagram shown below, where q is the natural

projection and i, j are inclusions,
Kp(8H
e
- 1 q* N . i* 1
RpX/8") = Kp(X) = Kp(s)

w
k()

Since i*r* =1 and j*r* = 0 it follows at once that imj* = im j*q*.

Now consider the exact sequence

A . d*a*
Ko (%) = R (X/8) = K(X),
where SX is identified with X/(S' v X). If j* is onto and Ko (5X) =

then j*q* is an isomorphism, and hence
(11.12) j*q* : J(X/S") = J(X),

by the main theorem of J-theory.

To prove (11, 11) we take X = Pk = Pk(C), with Z2 acting by
complex conjugation, The realification R #L of the complex line bundle
over Pk admits Z -structure as before, and the mappmg torus of this
Z -vector bundle prov1des an extension of R #I_. over Pk Since
[R#L] 2 generates KR(Pk), by (10. 3), it follows that j* is onto in this
case, Moreover kR(SP ) = 0, by induction on k, and so both our con-
ditions are fulfilled. Any even multiple of R,.D 4L, asa Z -vector bundle,
lies in the image of q*; hence the J/Zz-order of such a bundle is equal
to the J-order of the corresponding multiple of L, In other words

Bk b,, and now (11, 10) follows at once from (7. 5).
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12-The fibre suspension

Let X be a pointed space and let p : E = X be a fibration with
fibre F. By the q-fold fibre suspension (q =1, 2, .,.) we mean the

space 9E obtained from
@3 xE)+ 1! x %)

by identifying points of S1°* X E with their images under 1 X p, Since
1 X p is onto, points of zE can always be represented by pairs

(a, v), where a € Bq, v € E, Under fairly general conditions g
fibres over X with projection given by (a, v) * pv and fibre the un-
reduced gq-fold suspension of F, The definition can be modified by
collapsing to a point the image of Bq x e in ZUE where e € F is
basepoint, so that the fibre becomes SqF, the ordinary (reduced) q-
fold suspension. In what follows it is convenient to use the modified
form of the definition,

The structural maps of the fibre suspension are denoted by
Ay o gl & -1
BIxE = 2% « 277 x x,

Any map f: (B', Sr-l) - (X, xo) (r =1) determines a map

fr:BIx g7y g7 x BT = 29,
where f' is constant on BY x Sr_1 and maps Sq-1 x B according

to j(1 X f), We describe f' as obtained from f by the fibreconstruc-

tion, The transformation f = {' determines a homomorphism

. - q
T:. ﬂr(X) i 1(2 E).

q+r-

When q =1, in particular, it is clear from first principles that

(12.1) T=s_,-5,,,
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where s _:X = ZE is given by st(x) = (*1, x), I assert that for all

values of q we have
(12.2) T =-u,sla,

as shown below, where A is the transgression operator for the original
fibration and u : §F c Z9E,

A s

5 % Apy = >9g
7Tr(x) 7Tr-l(F) 77 q+r-1(S F) 7Tq+r-1( ).

This implies that if SIF is a retract of ZE with retraction p then
_ .
(12.3) p,T=-8la,

Here p,I' is given by the transformation f + {", where f is as before
and

i B x g7y s x pT = %F
is obtained from
pid x 1) : 83 x x » §IF

by the Hopf construction,
To prove (12, 2) (the case q =1 can be found in [72]), choose a
map g : (B, Sr-l)-’ (E, F), and let

h:BYx B' =29

be defined by composing 1 X g with the identification map. Note that h
is constant on §3°1 x Sr-l, maps BY x s*1 into SkF, and maps
sT1 x BT into $77' x X, Thus a homotopy

h,: BUx 87 u g1t x BT+ 2%
- a-1 sr-l
is given, for all x € S* ', y € , by

ht(ax’ Y) = h(ax’ ty) (0 =a= 1)v

ht(x, by) = basepoint (0 =b =1t)
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=hx 1-b+ty) (t=b=1)

Now h =u(slg ), where g = g|s*™, while h, = 1%, where k isa
map of degree -1 and f' is obtained by the fibreconstruction, as above,

from the map
-1
t=pg: (B, s )=, F.

Since h0 o h1 this proves (12, 2),

& For example, take p: On, k+1 -’On,k with fibre Sn-k’ Then
Z0

n, k+1 can be formed from

(B

k % On, k+1) + (Sk % On,

X

by identifying points of Sk X0
n’
A retraction

k+1 with their images under 1 X p,

. ydk -
p:Z 0n,k+1-’sn_E Sn-k

is defined on Bk X On’ k+1

12t xk)a (v1’ reey vk+1))=

by

(12.4) pi((x

L
2

x v+ +txv +Q0- |x|?) Vi)
where x = (xl, cees xk) € Bk’ and on Sk X On,k by
(12.5) pi((x), ooy %)y (Vs ceey V) =XV Foul +X V),
where x = (xl, ceey xk) € Sk To calculate
-SgkA : 7Tr(on, k) - 7Tr+dk-1(sn)’

therefore, we choose a representative f : Sr ind 0n and apply the Hopf
b

k
construction to

. I -
pLx )5 X8 =8,

where pj is given by (12, 5).
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In particular, consider the real case with n = 0 mod . Choose
-module structure on R", This determines both a
| 2nd amap gt =0 , inthe
’

j ]
obvious way., If o€ ﬂn-l(Vn, k) and o' € ﬂk_l(On) are the classes of

an orthogonal Ck-l

Clifford cross-section S™ ' = v,

these maps our formula shows that
(12, 6) SI:AO = +Jo',

This generalizes the results obtained at the end of §5 regarding the

cross-sections given by the inclusions

w v X cv

C
m,1 2m,2’ “m,1 4m, &

Note that if n= ., SO that R" is irreducible, then Jﬂk_l(On) defines
a cyclic summand of known order in the stable group of the (k - 1)-stem
(see [4] for details).

Let us briefly digress and prove

Theorem (12. 7). The Stiefel manifold 0n
b

lelizable.

K is stably paral-

This result is the first stage in Sutherland's proof [139] that
0n Kk is parallelizable when k = 2, To prove (12, 7) recall that if V
is ;1 smooth vector bundle over a smooth manifold M then

(12.8) 1 & T(S(V)) = p*(V & T(M)),

where T denotes the tangent bundle and p : S(V) == M the projection.
Thus if V is stably trivial and M is stably parallelizable then S(V)
is stably parallelizable, Now the retraction EdkOn k+1 ind Sn defined
above determines a trivialization of Z)dkon’ k+1 as’ a sphere-bundle
over On, k' Hence (12. 7) follows by induction.

In view of (12, 7) the duality theorem of Milnor and Spanier [113]
(see also Atiyah [7]) shows that On,k is self-dual, in the sense of S-
theory, Because our procedure uses the specific trivialization deter-
mined by the retraction in (12, 4) we obtain, in this way, a specific class

of duality map, so that the dual of a class of self-maps of 0n Kk is well-
t4
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defined. By using a homotopy-equivariant version of the above argu-
ment, and ignoring changes of sign, it is easily shown that the classes
of A and p are both self-dual in the real case, and the class of com-
plex conjugation is self-dual in the complex case.

Since O n,k n, K
we have seen, 1t follows at once that the dual of Q k (sultably sus-

is self-dual and Q k is an S-retract of O as

pended) is also an S-retract of O It appears, therefore that the

n, k'
S-type of 0n K splits into the wedge sum of four spaces: a stunted

b
quasi-projective space at the bottom, a middle section (about which little
is known), a stunted projective space next to the top, and finally a

sphere in the top dimension.
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13-Canonical automorphisms

In this section we study the canonical classes A, ¢ and &= A of

self-maps of V defined in 81 and particularly the induced automor-

n, k

phisms of # (V k).

After showing that

(13.1) ¢, =1- 4S,p,,

where
S A

B AR I ST NG N
r nk r r+l r'nk’’

we shall use the results of §12 to show that

(13.2) A, =1-u,S8,A,

where

A S, u
-1 " = a @™ S v

oy (Vn, k) r-1

y k)'

Since S Ap, =S, p, A =-S A we deduce from (13, 1) and (13, 2) that
(13.3) p,=1-u,S,A- AS,p,.

These formulae can be used to obtain information about the transgression
operator, as well as the induced automorphisms. For example, recall
that

k n

(13.4) X, =p,,
from (1.1). Using this we deduce from (13. 2) that u,S,A=0 when n
is even and k is odd, from (13.1) that AS,p, =0 when n and k are
both odd, andfrom (13, 3) that u,S,A = -AS,p, when n is odd and k
is even,

In the stable range, when V can be replaced by P n, k’ we

,k
can deduce (13, 1) from (13. 2) by usmg the duality formulae of §7 To
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prove the identity in general, however, we consider the following
situation. Let H be a subgroup of a topological group G and G/H
the factor space of left cosets, The space Q(G, H) of paths in G from
the neutral element e to H inherits the structure of a topological group
from G. Hence the space of loops on (G, H) inherits a group-structure,
which of course is homotopically equivalent to the H-structure given by
loop composition, Hence the group structure in 7Tr(G, H) (r = 2) deter-
mined by the topological group structure of the pair (G, H) coincides
with the ordinary group structure given by track addition.

Suppose now that we have a self-inverse automorphism & of G
which acts as the identity on H, and let £ also denote the induced invo-

lution of G/H. Consider the composition
p g
(G, H) = (G/H, ) = (G, H),
where p is the natural projection and
-1
Ep(g) =g. &(g ) (g € G).

Then { p, =1- £, by the above remarks, where £, denotes the auto-
morphism of 7Tr(G, H) induced by £ Now suppose that

Py : T (G, H) =1 (G/H)

is an isomorphism, as is the case (see [133]) when (G, H) is a Lie

pair. Since

P8Py = Py - Pudi = Py - §,0,,
we obtain the relation

135 p L, =1-¢§,.

To prove (13.1) take (G, H) = (On’ On-k)’ with £ defined by conjuga-
tion by the matrix

1616,,,. 616-1 (n summands),

A straightforward calculation, with reference to (23. 3) of [133], shows that
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the self-map p§ of V, y coincides with the composition
b

P n-1d

v =S -V

n,k
where d is the projection of the classifying map Sn-1 - On. Since d

represents ALn, where

A 7Tr+1(Sn) - ﬂr(Vn,k)’

it follows that d, = AS, and hence that
as.p, =dp, =p, 8, =1- ¢,

by (13.5). This proves (13.1).
To establish our second result we generalize in a different way
and use the main theorem of 8§12, Let X be a fibre space over a fibre

space Y over a space Z, as shown in the following diagram.,

Pe—me—O
Y
re— M —O)

!

Here A is the fibre of Y over Z, B is the fibre of X over Z, and C
is the fibre of X over Y. Thus each of the horizontal and vertical rows
of three forms a triple (fibre, total space, base).

Let f:t : Y=Y be a pair of fibre-preserving maps, over Z, and
let ht :X=Y (-1 =t=1) bea fibre-preserving homotopy, over Z,
such that h:l:l = ftp, where p: X =Y is the fibration, Now ZIX, the
fibre-suspension of X, is a fibre space over Y with fibre SC and
canonical cross-sections s, Y =+ ZX. Consider the map g:ZX =Y

which is given by

gi(t, » = htx xeX, tel,
gilxl, yy =1y (yeY)

By (12, 1) and (12, 2) we have the relations
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Sy~ S_y = W,S,4,

where
A S, u,
m(¥) = 7 (©) = 7 (SC) = 7 (ZX).

Since gs, = f:t it follows at once that

f+* -f ,=g,u,85,A

But gu= Y where v:A C Y and where g, " SC =+ A is determined
by g. Therefore
(13.6) f,,-1f ,= v*gD*S*A,

where
A S g v
n(¥) = 1 (C) = 7 (S0) ¥ 7 (a) = 7 (¥).

To establish (13, 2) we apply this formula in relation tothe

diagram shown below,

Sri-k-l 5 Srl-k-l

Vi-k+1, 2 > Yokl T Vi, k-1
¢n-k l l
S Vn, k Vn, k-1

Take f+ to be the identity on Vn K and f_ the self-map which changes
b
the sign of the first vector in each k-frame, Then a homotopy

h :V -V satisfying our requirements, is given by

t n, k+1 n k
h, ( = (v_si T+ L
LV Vo Vo, Vk+1)_ v sinst+v cosst, v ,..., vk+1).
In this case the map g : S(s" K1y » gtk 1
P g (S )y=S has degree 1, and so

(13, 6) yields
1-2, =1u,85,4,

since f_ 1is of class A, This proves (13, 2).
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For example, consider the homotopy class ﬁm € 172m_1(V2m 2)
b4

(m=1, 2,,,,) of the inclusion W.1€ V2m From (5. 8) we at

4

o
b4
once obtain that Aﬁm =mmn, and so

(13' 7) A*ﬁm = ﬁm - mu*n}
by (13.2), If m =2 then ﬁm = ﬁl * ﬁm-l and so
g*(ﬁm) = g*(ﬁl * ﬁm-l) = (g*ﬁl) * (A*ﬁm-l),

by (2.4). Since g*Bl = -ﬁl, from degree considerations, and
ﬁl * u*172m_4 = u*172m_2, as in the generalized Freudenthal theorem,
this shows that

(13.8) §B8_=-B_+ (m- Lu,m,
and hence

(130 9) p*ﬁm = -ﬁm + u*n-

Also AL2m = Zﬁm - (m - Vu,7n, by (13.1), where

A (SZm)

-
r+l1 T

r(V2m, 2)’

These formulae can be used to calculate the action of A, and p, on
ﬂr(VZm, 2) for all values of r.
Similar calculations can be made in respect of Ym € 7T4m-1(V4m, 4),

the homotopy class of Xm By (5.9) and (13, 2) we have that

C
,1 V4m, 4

(13,10) )\*'ym = Yy - MUY,

for m = 3, Recall (see §22 of [133]) that 773(04) is freely generated
by the pair (a, B), where B = Y and o =8+ (B, I m=2 then
Ym = B * Yin-1 and so

(13 11) ﬁ*'ym = Gm " Y + (m - Du,y,
where 6 =a x y and therefore

m m

-1

(13.12) Ho¥p, = Gm = VT U
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Comparing (13, 11) with (13, 1) we see that

(13.13) AL4m = 2-ym - Gm - (m- u,v,

4m
where A : 7Tr+1(S ) = 7Tr(V4m’ 4). I do not know of any other way to
obtain this result, These formulae can be used to calculate the action

of A, and p, on 7Tr(V4m,4), for all values of r.
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14 -Iterated suspension

The purpose of this section is to show how the homotopy groups
of Stiefel manifolds and stunted projective spaces play a special role in
the study of the homotopy groups of spheres.

Let Hn (n=1, 2, ...) denote the space of (free) self-maps of
Sn_1 which are homotopy equivalences, with the obvious embedding
O CH. Let p:H = s" ! pe defined by evaluation at the basepoint,

Then p is a fibration with fibre the subspace Fn— of pointed maps.

1
We embed Hn in Fn’ using the suspension functor, and consider the
homotopy exact sequence of the triple (Fn’ Hn’ Fn-l)’ as follows:
F i:r ]-t -
-
" 7Tr(Hn’ n-l) 7Tr(Fn’ Fn-l) 7Tr(Fn’ Hn) et

Since p is a fibration we have that
p:m (H,F )= ("
*' r'n’ " n-1 by ’

for all values of r. From first principles we have a generalized

Hurewicz isomorphism

" 87, BY),

b 7Tr(Fn’ Fo- )= T nS 5 By

1 r+n

where Br_:_, Br_1 denote the closed hemispheres into which Sn_1 divides
s". Choose a generator K € ﬂn(Br_l, Sn_l) and consider the boundary

isomorphism
. n n-1, n-1
S:m . (By, S )=m (87)

Then a homomorphism ¢ is defined, as shown below, so that if
Qe ﬂr(Sn-l) then ¢(a) = [6-101, Kn], the triad Whitehead product,
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——————e
ﬂr(Hn, Fn-l) ﬂr(Fn, F _1)
r| lo
n-1 n _.n n
_ .
m (8" n.(S"% B}, BD)

¢

An unpublished result of W, E, Sutherland's asserts that
(14.1) ¢p, = £6i,,
Assuming this we deduce

Theorem (14.2). The pair (Fn’ Hn) is (2n - 3)-connected,

This follows at once from (14, 1) and the main theorem of [22]
and [143] on the triad Whitehead product, The proof originally given in
[63] loses a dimension. However Haefliger [51] has given an entirely
different proof, using the methods of differential topology, and goes much

further by establishing

Theorem (14, 3), I r = 3n - 6 then

7Tr(Fn’ Hn) =

r-n+1(0’ On-l)'

Here O, of course, denotes the stable orthogonal group.

The inclusions (0n+1’ On) c (Hn+1’ Fn) c (Fn+1’ Fn) induce
homomorphisms
u, Vg
7Tr(on+1’ On) - 7Tr(Hn+1’ Fn) - 7Tr(Fn+1’ Fn)'

The fibrations p : Hn+1 - 3" and p'= p|0n_'_1 induce isomorphisms
0 .,,0 %o 2
™ ( ) = (S -

n+1’ “n n+1’ Fn)'

Therefore u, is anisomorphism, since p, =p,u,, while v, is

(2m - 2)-connected, from (14,2), Hence if r =< 2n - 2 then

F).

Vil - 7Tr(o 0y = 7Tr(Fn+1’ n

n+1’> “n

Hence by induction on k, using the five lemma, we obtain
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Theorem (14.4), If r =2n- 2 then

F),

w r(Fn+k’ n

*

: 7Tr(on+k’ On) =7

where w: (O On) C(F

n+k’ n+k’ Fn)'
Recall (see [152], [160]) that the Hurewicz isomorphism 6 satis-

fies the relation 0i, = tsl,fe, as shown in the following diagram,

i
*
_
ﬂr(Fn) ﬂr(Fn+k)

Bl l@
n 3 n+k
7Tr+n(S ) k 7Tr+n+k(S )
S*
Write Pk = JA, where
A J n
7Tr(Vn+k,k) - 7Tr-l(on) - 7Tr+n—1(S ),
and if r =2n- 2, so that (14, 4) applies, write H_= w;lj*e-l, where

6 w

n+k I« T
7Tr+n+k(S ) 7Tr(Fn+k) 7Tr(Fn+k’ Fn) 7Tr(on+k’ On)’
Then (14, 4) implies that the sequence
n
(14, 5) 172n_2(S )=
H P

n+k _}(ﬂ v

B3 n
r+n+k(S ) r' n+k, k) 7Tr+n-1(S ).

n *
-7 +n(S )=
is exact, This can be regarded as a generalization of the EHP sequence of
G. W, Whitehead [155]; an application will be given in §21 below.

Another treatment of the iterated suspension, with certain ad-
vantages, is due to Toda [148], We describe this briefly. Consider the
action O X st agn-t o O  on Sn_l. Applying the Hopf construction
we obtain a map h : SnOn -+ 5" with the property that h*Si1 = J, where

n h R

7.0) = 7., S"0) =~ 7. (S
i n) i+n n i+n( )-

The maps h can be chosen so as to be compatible for various values of

n. Hence the adjoint of h determines a map
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k .n+tk

n n
S On) = (Q°(S

f:(8 0n+k’ )s Sn)y

for k=1, 2, ... . When k=1 the composition

st f
7© .,0)=7, (s"O s"0 ) > 7. (s
n' n+1’ “n 2n n+1’ n 2n

n+1)’ Sn)

is easily shown to be an isomorphism, from which it follows that

n+1

. n n - n
gy 1Ty (8P 4, SP)=7, (US ), S,

where g=f|Sn(Pn+1, P).

Given any pair (X, A) consider the space X U CA obtained by
attaching the cone CA on A to X. Each point x € X determines a loop
in SX, givenby t > (x, t). Each point (a, s) € CA determines a path
in SA, givenby t + (a, st + 1 - s). These transformations agree on
A and so determinea map i of XU CA into Q(SX, SA), the space of
paths in SX which start in SA and end at the basepoint. When (X, A)
is a CW-pair the natural projection X U CA = X/A is a homotopy equi-
valence, and by composing i with a homotopy inverse of this we obtain
a class of maps j : X/A = Q(SX, SA).

Consider, in particular, such a map

n-1

. n
j:S Pn+k’k-’Q(SP

n
ntkr S Pn).

Composing this with the restriction of

n+k

ot : a0, s%0 )= 2@ ™), s

n+k’
we obtain a map

n-1 k,_n+k n
e:S Pn+k’k-’Q(Q (S ), S).

Toda refers to the induced homomorphism

n-1 k, .n+k

. n
€y 7Tr(S Pn+k,k) -’7Tr+1(Q (s ), 89

as the generalized J-homomorphism, and proves

Theorem (14, 6), If r < 2n- 2 then e,, as above, is an iso-
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morphism, If r < 4n- 3 then e, is an isomorphism of 2-primary

components,

This is proved by induction on k, using what is essentially a five
lemma argument based on the case k = 1, which we have already dealt
with. The memoir of Toda [148] is the basic reference but the recent
note by Nomura [115] is also relevant, This line of thought leads on to
the important result of Barratt and Mahowald [17], which states that if

n=13 and r =2n - 3 then the homotopy exact sequence
1410, 0) =7 (0) =7 (0)

is short exact and splits, Further information about this, with calcula-
tions in the range r - n = 29, can be found in the memoir of Mahowald
[100] (see also [58]).
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15-Samelson products

Following Leise [95] our treatment of Samelson products is based
on the following identities, valid for any elements a, b, ¢ of a group G

with neutral element e:

[a, b][b, a] =e,
(15.1) [a, bc] = [av b][a'v c][[c, a]v b]
[2%, [b, c]lic®, [a, BIID?, [c, a]] =e.

Here [a, b] =aba 'b = and a® = bap™ ™.
For any topological group G the (ordinary) Samelson product
{(, ) is a pairing

T (G X7 (G =7 G =1
@ X 1@ =7, (G (0, a=1)

defined as follows. Let a € ﬂp(G), B e ﬂq(G) be represented by maps

p, g .

@, ) = G, e « a1

Then {a, B) € 7Tp+q(G) is defined to be the element represented by
h: @ x1? Px1BuPxil = (g, e,

where h(x, y) =[x, gy] (x € Ip, y € Iq). The commutation law
15.2) (e, B = (1P X, a)

follows at once from the first identity in (15, 1), while bilinearity can
easily be deduced from the second. Notice that if G' is a topological

group and ¢ : G= G' a homomorphism then
(15.3) ¢ a, B) ={¢,a, ¢,8),

where ¢, : 7,G=7,G' is the induced homomorphism. Moreover if
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gem(sh), ne n].(sq) then
(15.4) a e & Beon)=(a, B) ° (£~ 7)),

where £~ 75 € ﬂi+].(Sp+q) denotes the smash product in the homotopy
groups of spheres, This can be seen at once by recasting the definition
in terms of maps of spheres.

The Samelson product satisfies the following form of Jacobi
identity:

15.5) (-1’Xa, €8, ) + (-1)"Xy, (a, B + (-1)PXB, (4, &) =0,

where o € ﬂp(G), B e ﬂq(G), v € ﬂr(G) (p, 9, r = 1). There are various
proofs in the literature of which the following, due to Leise, is par-
ticularly simple, Choose representatives f, g, h of @, B, v so that
f: (Ip, ip) = (G, e), etc. Consider the homotopies

+q+r :p+q+r
kt’ lt’ mt:(Ipq ’Ipq ) =* (G, e) (tel

defined for x € Ip, y € Iq, zell by
-1
k(x, ¥, 2) = [h(t2)f(x)h" " (tz), [gy, hz]],

(15.6) {1,(x, v, 2) = [gty)h@)g ' &), [x, gv]],
mt(x, y, z) = [f(tx)g(y)f-l(tx), [hz, fx]].

When t= 0 these three maps represent
(@, (8, v, (DEFI (a, Y, (DPEFG (5, @)

respectively, When t =1, however, the product kll Rl is constant,
by the third identity in (15.1). This proves (15. 5).

Another way to look at the Jacobi identity is to consider the
operator

'y#:ﬂt(G)"ﬂ G) t=1, 2,...)

r+t(

given by the Samelson product with ¢, Then (15. 5) is equivalent to the
derivation law
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15.7) rga, B) =(nue, B + (-1)¥a, v,p).

In particular, take r =1 and suppose that 772(G) = 0, as is the case
when G is a Lie group. Then 27’; = 0; moreover there is some

evidence to support the

Conjecture (15.8). For some value of s, depending on y but

not on r, the operator

'}’i : ﬂr(G) - ﬂr+s(G) r=1,2...)

defined by iteration, is trivial.

For example take G = Rt’ the rotation group. Let
D: T (Rt) - 7Tr+1(Rt) be defined by taking the Samelson product with
the generator 6 € 771(Rt). Take t> 2, since t =2 is trivial. We
prove

Proposition (15,9), If t=2 mod 4 then D’ = 0.

The projective group PRt is defined to be the quotient of Rt
by the centre {e, -e }. The natural homomorphism p : Rt ind PRt

induces a homomorphism
Py ﬂr(Rt) - ﬂr(PRt)

which respects Samelson products and is an isomorphism for r = 2. Since
t =2 mod 4 we have that ﬂl(PRt) = Z4 with generator ¢, say, such that
2¢ =p,0. Henceif o ¢ ﬂr(Rt), where r = 2, we have that

p,Da =2p,a, ¢) and therefore
p,D’a = &lp,a, ¢), ¢) = 2Ap,a, (9, ¢,

by the Jacobi identity in 7,(PR,). But {¢, ¢) = 0, since 7,(PR,) = 0,
and so D’a = 0, since p, is an isomorphism, This proves (15.9).
Further information about the operator D will be obtained in the next
section, after relative Samelson products have been discussed.

Let H be a subgroup of the topological group G. The relative
Samelson product ¢, ) is a pairing
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ﬂp(H) X ﬂq(G, H) = 7Tp+q(G, H)

defined as follows, for p= 1, q= 2, Let a € ﬂp(H), B € ﬂq(G, H) be

represented by maps
t: @ ih>m e, g: % 1Y@ B.
Then (o, B) € 7Tp+q(G, H) is represented by the map

+q :p+
h: (P79, 1P7% ~ (G, m),
where h(x, y) =[x, gy] (x € Ip, V€ Iq). For formal reasons it is also
desirable to introduce the pairing ¢, ) :
G B X1 @7, G H (@2 q21),
similarly defined, The commutative law

(15.10) (e, B) = (-1)pq'1<ﬁ, a)

is easily verified. The basic properties of the relative Samelson product,
such as bilinearity, are established just as in the ordinary case. For
the composition law, let 7' € ﬂj(Bq, Sq-l) denote the semisuspension of

an element 7 € ﬂj_l(Sq-l). Thenif £ € ﬂi(Sp) we have
(15.11) (a e & B ') =(a, B) ° (£~ ),

for a € ﬂp(H), Be ﬂq(G, H). Leise's proof of the Jacobi identity applies

without alteration to the relative case, and shows that
15.12)  (-1)Pa, 8, ¥ +(-1)" Xy, {a, B +(-1)PKB, {5, a)) = 0,

where o € 7Tp(G, H) p=2), Be ﬂq(H) (@=1), and y e ﬂr(H) r=1).
The main relations between the ordinary and relative Samelson

product are indicated in the following diagrams.

®
(15.13) 7 (H) X 7.(G, H) = 7, (G, H)

1x5l . la

m ) X 1 () = T ()
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7, () X 7(G)

i x/ \j*

(15, 14) ﬂp(G) X ﬂq(G) ﬂp(H) X ﬂq(G, H)
<Jl ym
L) T Tk ©

The homomorphisms 1, j,, 5, of course, are from the homotopy exact
sequence of the pair (G, H), and the diagrams are commutative, apart
from sign changes. We see from this that an element y € ﬂr(H) deter-
mines a homomorphism of the homotopy exact sequence into itself,
raising dimension by r. On 7 _(H) we take the ordinary Samelson
product with y itself, on 7 (G) the ordinary Samelson product with
the image of ¢ in 7Tr(G), and on 7, (G, H) the relative Samelson
product with ¢ itself,

Another approach to Samelson products is to consider the classi-

fying space B_, of G. This is the base space of a principal G-bundle

G
with contractible total space and so the transgression

A .

: ﬂr+1(BG) & ﬂr(G) r=1, 2, ...)

is an isomorphism, Samelson [122] has shown that
(15.15) a4 n]=ag, an),

where &, 7 € ﬂ*(BG). Furthermore A can be relativized so as to con-
stitute an isomorphism, of degree -1, from the homotopy exact sequence
of the pair (BG, BH) to the homotopy exact sequence of the pair (G, H);
this isomorphism transforms the Whitehead product structure of the
former into the Samelson product structure of the latter.
Finally, consider the homomorphism ¢, : 7 (G, H) = 7 (G/H),

induced by the natural projection ¢ onto the factor space. Suppose that
¢, is an isomorphism, as is the case when (G, H) is a Lie pair. Then

the relative Samelson product can be regarded as a pairing
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m (H) X 7 (G/H) = 7, (G/H).

This is the point of view we shall adopt in the next section.

29



16-The Hopf construction

Following [80] our approach to the Hopf construction is based on
the work of McCarty [96], as well as earlier authors. Let A and Y
be pointed spaces, We say that amap p: A X Y=Y satisfies the
McCarty condition if

pa, e)=e (a € A),
(16.1) {

ue, y)=y (y€Y).
Under this condition a pairing of = (A) with 7 (Y) to 7Tp (Y), where
p, 4 = 1, is defined as follows. Let a e ﬂp(A) Bem (Y) be represented
by f: Sp —A g: sd =Y, andlet p: sP x -4 denote projection on

the second factor. By (16.1) the maps u(f X g) and gp coincide on the
subspace

PxevexslcsPxgd
and so the separation element

d(u(t X g), gp) €7, (V)

is defined. This element, which depends only on a, 8 and u, will be
denoted by Jp(a, B).
For example, let G be a topological group and let

H:GXG—=G

be defined by u(x, y) = xyx ". Then Jp(a, B) ={a, B), the Samelson
product,

For another example, let (G, H) be a Lie pair and let

B H X (G/H) =~ G/H
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be induced by the translation action. Then Jp(a, B) ={a, B, the
relative Samelson product. In particular, suppose that G/H = s? and

B= Lq' Writing Jp(a, Lq) = Jo, in the usual way, we obtain the relation
(16.2) {a, Lq> = Jo.

Returning to the general case, suppose that ¢ : G+ G/H isa
fibration with fibre H and transgression A : 7Tr+1(G/H) - . (H).
McCarty [64] has proved that

(1e.3) [a, 8] =Haa, B)

where a, B €7 (G/H) and square brackets denote the Whitehead product.
To see this, consider the relative loop space (G, H) of paths in G
from e to H. This space inherits from G the structure of a topologi-
cal group so that the evaluation map d : (G, H) #* H is a homomor-

phism. Now
Q¢ : Q(G, H) = Q(G/H)

preserves H-structures, up to homotopy, and so the Whitehead product
in G/H can be identified (up to sign) with the Samelson product for
Q(G, H), by Samelson's theorem (15.15), Hence (16. 3) follows from
consideration of the diagram shown below, where the horizontals are all

determined by the group operation of G,

G, H) X QG, H ——> (G, H)

ot I

H X QG, H) ———> (G, H)

1><Q¢l lszq;

HX QGH) —> Q(G/H)

Notice, incidentally, that {Aa, 8) = £{a, AB).
Another approach to the relative Samelson product is to con-
sider H-bundles over a given base with fibre Y = G/H. Since the action

of H on Y is pointed each of these bundles possesses a canonical
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cross-section. When the base is S (n=2, 3, ...) the classes of H-
bundles correspond to elements of ﬂn_l(H). Consider the bundle E with
fibre Y over S" which corresponds to a given element a € ﬂn_l(H),
and let o ¢ 7Tn(E) denote the class of the canonical cross-section. We
shall prove that if 8 € ﬂq(Y) then

(16.4) ife, B) =-[o, i8],

where i, : 7, (Y) =+ 7,(E) is induced by the inclusion, In (16. 4) the
brackets on the left refer to the relative Samelson product and those on
the right to the ordinary Whitehead product. Note that (16. 4) character-
izes the relative Samelson product since the existence of a cross-section
implies that i, is injective.

The general composition law for the relative Samelson product
can be obtained as an application. Let « € ﬂp(H), B e ﬂq(Y), v € ﬂr(sq),
where p=1 and q, r = 2. The general composition law is given by
an expansion of the form

(16.5) (@, Bo ) =(a, B) o Shy+

Ke, B), B] <SPy + [[Ka, B, B, B]o Sy +... ,

where ', v", ... are generalized Hopf invariants of y. This follows
at once from (16. 4) and the corresponding formula of Barcus and Barratt
[13] for Whitehead products. When v is a suspension the generalized
Hopf invariants vanish and the formula reduces to (15.11). When Y is
a sphere s? the quadruple Whitehead products vanish (see [56] or [65])
and the expansion terminates after the third term. Further if q is odd
then the triple Whitehead products also vanish (loc. cit. ) and the ex-
pansion terminates after the second term.

To prove (16. 4) we first recall how the Hurewicz isomorphism
is defined, Given any space X let ng (@=1, 2, ...) denote the
function-space of free maps of Sq into X. Consider the fibration
¢ ng = X defined by evaluation at the basepoint e € s The fibre
over the basepoint e € X is the space X of pointed maps of Sq into
X, Choose one such pointed map u : =X as basepoint in the function-

space. Then the adjoint of a pointed map f': P =X isa map
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f:8P x s% = X and the Hurewicz isomorphism

r (8x) =
v @)= 0

is given in terms of the separation element by
(16.6) wif'} = dd, up),

where p : Sp X Sq ind Sq is as before.

Recall that E, in (16.4), is a bundle over S" with fibre Y and
group H. Choose amap v: Sn-1 = H representing the classifying
element «, and let f denote the composition

n-1 vl H

S XY =+ HXY-=Y.

n _n-1 n . . .
If k:(B,S ")=(S, e isarelative homeomorphism then, since the
induced bundle k*E is trivial, we can find a relative homeomorphism

h, extending f, such that ph = ki, as shown below.

h
B xY, "I xy) —— (&, V)

| |2

In (16.4), an element B € ﬂq(Y) is given. Choose a representative
u:81=Y of B as basepoint in ©3Y and consider the following diagram,
where i, is induced by the inclusion and ¥ denotes the Hurewicz iso-

morphism,

q d s qd v
ﬂn(Q*E, Q'Y) = ﬂn_l(Q Y) - 7Tn+q_1(Y)

. v

n @lE, QIE) > 1, (@3E) ; morqo1(®

Since Q3E is the fibre of the fibration ¢ QgE = E we have an isomor-

phism
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9, : 7 (@E, Q%E) ~ 7 (E).

Also G. W. Whitehead's characterization of the Whitehead product, in
(3. 2) of [152] (see also [160]), shows that

vo(n) = -[9,m, 1,8],

for any 7 € ﬂn(QgE, QqE). Take 5 =1, where { ¢ ﬂn(QgE, QqY) is
the class of the adjoint

n

b : (8%, 8"t - @k, ody)

of h(l X u). Then
-[9,1.8 18] = ¥61,(8) =1,98(0),

by commutativity of the diagram above. Since ph = ki, however, it
follows that ¢*i*§ =0e€ ﬂn(E), the class of the canonical cross-section.
Also h|Sn-1 X Y is givenby f = p(v X 1), hence 6§ is represented by
the adjoint £': "1 = 3Y of £(1 X u), and so

Yo(8) = d(f(1l x u)’ up) =<a’ B>’
by (16. 6). Therefore
i*<01, B) = -[g, i*ﬁ]’

as asserted.

Now suppose that E is a retractible H-bundle over Sn with fibre
Y = G/H. Choose a retraction r : E =Y. The fibration admits a cross-
section of class 7, say, where 7 € ﬂn(E). Replacing 7 by o0=17- 11,7
we obtain a class of cross-section such that r 0= 0, Take o, asin
(16. 4), to be the classifying element of the fibration. If Be 7Tq(G/H) then

(@, B) =r1la, B) = -r,[0, i,8] =0,

by (16. 4) and naturality. Thus the relative Samelson product determines

an obstruction to retractibility.
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For example, take E = Vn+1,k+1’ with (G, H) = (0 0n k)
and Y=V n,k Suppose that the fibration is retractible and con51der
the followmg diagram,

A J ik
T Va1, k4D ™ "1 ™ Tope1 )

S

7Tn(sn) - 7Tn-l(on) - 772n-1(sn)

The left-hand square is commutative, by naturality, and the right-hand
square is commutative apart from sign, as shown in [151] (see also
[160]). Write y = JAo, where o € ﬂn(Vn+1,k+1) is the class of a

cross-section, Then
tSEJAo:Ju*Acx:JAL =w,
n n

the Whitehead square. However n is odd, since a cross-section exists,
+ = = i
and so W =W Thus Sli'y W - Also if B e ﬂn-k(Vn,k) denotes the

class of the inclusion then
B o y=uJdac={ac, B),

the obstruction to retractibility, by (16. 2) and naturality. Therefore we
obtain

Proposition (16. 7). Suppose that V is a retract of

n,k
Vn+1,k+1' Then Mo k- 1(S ) contains an element y such that

dy=w, ) Bey=0,

where S € ﬂn-k(Vn,k) denotes the class of the inclusion.

Similar results can be obtained in the complex and quaternionic
cases, In $20 below we shall use (16. 7) to prove (1, 11), the triviality
theorem.,

For another application of the theory take (G, H) = (R
so that G/H = Sq, and consider the operator

q+1’ Rq)’
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. q a
D: 7Tr(S )"ﬂr+1(s )

defined by taking the relative Samelson product with the generator
8enm (R) By(16.2) wehave Dt =J8 = €T Sq. The compo-

Ry By (16.2) a Mg € Tq+1657) P
sition law (16. 5) enables us to calculate D in general, as follows.
Recall (see [56] or [65]) that the triple Whitehead product in ﬂ*(Sq) is
of odd order. Also [172, Lz] =0, and 217q =0 for q> 2. Hence

[[nq, Lq], Lq] =0 for q =2 and so the composition law reduces to
= 0 a
(16.8) Dy= 'r)q °eS, vt [nq, Lq] S,Hy (ye 7Tr(S N,

where H denotes the generalized Hopf invariant. Now H[nq, t ]1=0,

q
since [n , t ] is a suspension element, and S*[nq, t 1=0. Hence

q
on iterating (16. 8) we find, after the first step, that

2 2 4
Dy= nq ° nq+1 ° 8,7 and then, after two more steps, that D y= 0,

since M, ° Mg+1 ° Mg+2 ° Mg+3

= 0, This proves
Proposition (16. 9). The operator
4
D' i m (8T =7, (8%
is trivial,

By pausing at the third step, incidentally, we see that
Dzwq(sq) # 0, so that (16.9) is best possible.
With (16. 9) in hand let us take a further look at the operator

D: ﬂr(Rt) - ﬂr+1(Rt)
of §15 and prove
Proposition (16, 10). The operator
6 .
DT R = 7Ly o Ry

is trivial whenever t is odd.

First take the case t = 3 mod 4 and regard D as operating on
the fibre homotopy sequence
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e ® ) S RS 1)
) rvot-1 rot r

as described above. If a € ﬂr(Rt) then p*D4a = tD4p*a = 0, by (16.9)
with q =t- 1. Hence D'a = u*B, by exactness, for some S € ﬂr(Rt_l).
But Dzﬁ =0, by (15.9) with t - 1 in place of t, and so

D’e = D’u,8 = #u,D’f = 0.

This proves (16. 10) when t = 3 mod 4. To deal with t =1 mod 4 we use

the fibration Rt g St, instead of Rt - St_l, but otherwise the details

are similar. The same kind of argument shows that D’ =0 when t=0
mod 4 but this can be improved, as we shall see in a moment.

For a further illustration of the theory take (G, H) = (R2n’ R2n-2)
and hence G/H = V2n, 29 where n = 2, Consider the operator

D: 7Tr(V )= v

n,2 " Tr+1Von o)

defined by taking the relative Samelson product with the generator
2n-2
0 e T (R2n_2). Recall that J6 = Nopn-2? the generator of 772n_1(s ).
i =
As in §13 let a € ﬂ2n—2(V2n, 2) (n=2) and ﬁn €en \ ) m=1)
denote the classes of the inclusions

2n-1""2n, 2

u v
2n-2 _ - _ 2n-1
§ =Vou1,1 " Von,o T Wy 1 =8
I assert that
(16.11) Dan = an * Mon-2 Dﬁn = ﬁn ° n2n—1'
For since an =u, L2n_2 we have

0) o

<an’ 6) = u*<L = u*172n-2 =%° n2n—2’

2n-2’

by (16. 2), and similarly

— ' — — o
<ﬁn’ 0) = v*<L2n-1’ o) = Vallon.1 =By ® Ton_v

1] j =
where 6' generates 771(Un_ Since any element of 7Tr(V2n’ 2) (n=2)

)
1
can be expressed in the form a o0+ ﬁn o 7, for some 0 € ﬂr(Szn-z),
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T € ﬂr(Szn-l) we can calculate D in general by using (16. 11) and the

composition law. Proceeding as before we obtain

Proposition (16, 12). The homomorphism

D4:7T

I‘(V

on,2) ™ Tr4aVon, o)
is trivial.

Finally let us regard D as operating on the fibre homotopy
sequence
u

* P,
R ) = ﬂr(RZn) - 7

» TRy 0

r(V2n, 2) -

If ac ﬂr(RZn) then p*D4a = tD4p*a =0, by (16.12), and so D'a= u,B,
for some Bem (R, ,). But D’8=0 when n is even, by (15.9),
hence D°a = 0, which proves

Proposition (16, 13), The homomorphism

6 .
D :m R) =7 (R

is trivial for all t = 0 mod 4.

We have now verified the conjecture (15. 8) for all the rotation
groups. The corresponding result for the unitary groups makes an

interesting exercise,
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17- The Bott suspension

In this section we study the family of maps B : R2n ind QRZn

given by the commutator

B(x)(t) =[x, e nC0s it + b2n51n m] (x € R2n),

2
where e denotes the unit matrix and
01 01
b2n = (_1 0) ... © (_1 0) (n summands).

We call these the Bott maps. Since b2n lies in the centre of Un there

is an induced map R2n/Un -+ QR this is essentially the same as the

2n:
map used in our discussion of relative Stiefel manifolds in §8. We

denote by F the homomorphism
ﬂr(RZn) - ﬂr(QRZn) = ﬂr+1(R2n) r=1, 2,...)

induced by the Bott map and refer to this as the (ordinary) Bott suspension.

Since B |Un is constant we have at once that
(17.1) Fi*ﬂr(Un) =0,

where 1i: Un C R2n' In the stable range the Bott suspension appears
(see [90]) in an exact sequence of the form
i, F
-7 7Tr(Un) - 7Tr(RZn) - 7Tr+1(RZn) AR
Hence it follows that if r < 2n then

(17.2) Fo=0e 7 (o€ ﬂr(RZn)).

It would be interesting to have a formula for F outside the stable range;
certainly (17. 2) breaks down.
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There is another way of defining the Bott suspension, which gives
greater insight into its formal properties. Consider the projective group
PR2n = R‘2n defined by factoring out the central subgroup {e, -el.

The covering homomorphism p : R2n ind R‘2n induces the homomorphism
. ] —
[ ﬂr(RZn)-’ﬂr(RZn) r=1,2,...)

which respects the Samelson product and is an isomorphism for r = 2,
The situation when r =1 is as follows. The loop
€,,c08 2mt + b2ns1n 2t (0=t=1) in R2n represents né, where 6

. . , _
generates 771(R The loop p(e2ncos Tt + b2nsm mt) in R2n repre

)
2n
sents an element ¢, say, of 771(R‘2n). If n is oddthen 2¢ =p, 6 and
¢ generates 771(R‘2n = Z4. If n is even then 2¢ = 0 and the pair
(0,8, 9) generate T (R‘2n = Z2 ® Zz' Referring to the definition of the

Samelson product in 8§15 we see at once that
(17.3) Fo=p,Xp,0, 9,

for all o€ ﬂr(RZn), and of course this can be taken as an alternative
definition. If n is odd then 2F = 0, by linearity, and if n is even
then 2F =D, as in §15.

From the Jacobi identity for the Samelson product in 7 *(R‘zn)
it follows immediately that F acts as a derivation with respect to the
Samelson product in 7 *(R2n).

Now consider the outer automorphism ¢ of R2n defined by

g Haga'l, where a= (-el) e 1€ 02n' Let {' denote the induced

2n-
automorphism of R‘2n’ so that p{={'p. Clearly ¢ - {,¢=p,0 andso

<0" ¢> - <0" c:k¢> = <0‘a p*9>’

for any element o' € 7 (R} ). However (o', C10) = Ei{ELa', @), since
§' is an involution. If o' =p_o, where o€ 7Tr(R2n), then {,0'=p L0

and so we arrive at
(17.4) F - C*FC* =D.

For example, take n=2 with r =3, Then {,a=a, { S=0a-5
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as shown in §23 of [133], where a, 8 € 773(R4) denote the standard
generators. Now B =1, where B' generates 773(U2), and so
{f', ') =p" = 7y, by (16.2), where ' generates 771(U2). Hence
(B, 6) = B o 7n, by naturality, while F8 =0, by (17.1). Therefore
(17. 4) shows that

(17.5) -Fa=§{ Ben=acn-B°1.

Recall moreover, that any element of 7Tr(R4) can be expressed (uniquely)
in the form a o 0+ B o 7, where 0, T € ﬂr(SB), Hence, using the com-
position law (16, 5), we can now calculate the Bott suspension on

7Tr(R4), for all values of r.

Returning to the general case, let 1 =k < n, The Bott map

B: (R (@R, , @

o Bopoox) ™ (Ryps SRy o))

determines an endomorphism of the homotopy exact sequence of the pair
(R2n’ R2n-2k)’ raising dimension by 1. On the absolute groups in the
sequence the action is given by the absolute Bott suspension already

defined. The action on the relative groups constitutes a homomorphism

Fom(Von o) ™ a1 Vop, 21

called the relative Bott suspension, such that

(7.6) FLm (W )=0,

where i : W cVv
n, k

determine a map V

. Of course the Bott map does not, in general,
2n, 2k

2n, 2k ~ WVon, ok
pension can be interpreted as a relative Samelson product, as follows.
Let R2n_ ok c R2n denote the direct product of R2n-2k and the

circle group generated by €5n-2k 52 b2k' Note that R2n- contains

2k
s _‘ C ] s
the circle group generated by b2n. Let R2n—2k R2n be defined by

factoring out the central subgroup {e, -e}, andlet p: R

However, the relative Bott sus-

=R
2n-2k
be defined by restriction of the natural projection to R2n_ Let

2k’
. ] j 1 — ]
p: V2n, k™ V2n, ok Pe defined similarly, where V2n, ok = R2n/E

- ]
Then p maps V2n, ok as an R2n—2k space into V2n, o) 28 an

1
2n-2k

‘2n- 2k’
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R‘2n-2k —
relative Samelson products, Since R

-space, and so the induced homomorphism p, respects the

/R

is a circle, the

2n-2k’ " "2n-2k

homomor phism
. ]
Pyt T Von o) ™ T.Vop o)

is an isomorphism for r = 2. Let ¢ € T (ﬁ‘Zn-Zk) be defined by the
loop p(e2ncos nt + b2nsin mt) (0 =t =1). It can then be verified that

(17.7) Fo=p,<p,0, 9,

for all o € 7Tr(V Of course this can be taken as an alternative

2n, 2k)’
definition of the relative Bott suspension, as in [75].

The original definition makes it clear that F acts as an endo-

morphism, of degree one, on the homotopy sequence of the fibration

\' v \'i

- -
2n-21,2k-21  '2n,2k  '2n,20’

where 1 =1 < k< n, With the alternative definition, on the other hand,
the relative form of the Jacobi identity (15. 12) for the pair

' n s .
(R2n’ R2n-2k) yields the relation

(17.8) Ko, 7) =(Fo, 1) + (-1)%0, Fr),

for o€ 7Tr(V TE 7TS(R Thus the Bott suspension acts as a

2n, 2k)’ 2n- 2k)'
derivation with respect to the Samelson product in the relative sense as
well.

Both R2n— ok and R2n_ o are stable under the outer automor-
phism § of R2n' Hence it follows by the same argument as we used

in the case of (17. 4) that
(17.9) F-¢{F{ =D,

where D is as in 8§15, Taking k = 1 we shall apply this, in the next
paragraph, to establish the key relation

(17.10) Fan =Qa °1- ﬁn,

where a € ﬂ2n-2(V2n, 2), ﬁn € ﬂ2n-1(V2n, 2) are as before. Notice that
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(17. 10), by naturality, yields the value of F on the first non-vanishing

homotopy group of V2n, ok’

The case n =2 follows from (17, 5) by naturality as in (15.13).

Let n> 2. We have already noted in §7 that p*Fa =%, 1 where
2n-1 -

pP:V, »,=*8 . With appropriate conventions, as in [75], the sign
’

turns out to be minus, and so
(17.11) Fa =@ ov- B

by exactness, for some element y € 772n_1(82n_2). To determine y
we apply (17.9) to ﬁn and obtain from (16, 11) and (17. 6) that

C*F(an °y) = ﬁn °n.

Now {8 =pB =-B +a omn, by(13.9), and so
Flagem)=-8 B em=B cn-0a cnem.
On the other hand (17. 11) yields
F(ano n):an"'yo 'r]+ﬁno n

Therefore ¥ = 71 and (17, 10) is established. An alternative proof will
be given in the next section.

Any element of 7 (V2 2) can be expressed (uniquely) in the form

@ °0+pB o7 where o€ (S2n 2y and T€7T(Szn 1). Now

F(ozn °c g+ ﬁ °T) = F(a ° 0), by (17. 6), and
F(ozn °g) = (Fan) o (8,0) + [an, Fan] o (8,0') +.

by the composition law (16, 5). Note that p*[an, Fan] = 0, since
P = 0, and so
(17.12) [an, Fan] =a e,
-2

by exactness, for some 6 € 7T4n_2(82n ). I assert that

(17.13) [[an, Fan], an] =0,
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Assuming this, the composition law reduces to
(17.14) F(ozn °0) = (Fan) ° (8,0) + a e 5 S Ho,

where Ho € . (SZn-S) denotes the generalized Hopf invariant and &
is as in (17.12),

The proof of (17.13), and hence (17, 14), is as follows. By (16.2)
and (16, 4) (cf. [89]) we have [an, B
u=Aat

n] =-a °Ju where
on-1 € Ton-2®oy, o). Hence

[@ , Fa_]=[a , a on]-[an,ﬁ

n n n n ]=ano(Pn+Jp),

n

_ 2n-2 _
by (17.10), where Pn = [1, L2n-2] € 4n_4(S ). Thus 6=Pn + Jyu,

in (17.12), and so 8,6 = 0, since S,P7 =0 and

T

2 2
Sydu = 8, JaL, = 8,w 0.

S1 T R on 1 T

Hence [, ¢, ,]=y° Sin-zHé, by the composition law of [13] for

Whitehead products, where y = [L2n_2, [L2n_2, L2n—2]]' But 3y =0,
by the Jacobi identity, while Hd is a multiple of 7. Since 27 =0 this

implies that [6, ¢ = 0, hence [an, a e 8] = 0, by naturality,

2n-2]
which proves (17, 13). Thus we can now calculate the action of the Bott

suspension on 7Tr(V for all values of r.

2n, 2)’
For example, it follows by repeated application of (17. 14) that

the iterated Bott suspension

6 .
Fo 7Tr(VZn, 2) - 7Tr+6(VZn, 2)

is always trivial. Hence, by induction on k, it follows that

ek
B 1. Von, 20 ™ ek (Von, 21

is always trivial. In particular
Fin R, )7 R, )
Trv2n r+6n" 2n

is trivial, Stronger results of this type can be found in §5 of [75].
The Bott suspension is also useful for computing relative
Samelson products, such as
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{o, ﬁn> ¢ 7Tr+2n—2(VZn, 2) (o€ 7Tr(RZn-Z))'
By (16. 2) we have at once that
(17.15) (o, B ) = a o 7+B °8,J0,

2n-2), and therefore

for some T € 7Tr(S
{Fo, ﬁn> = F{o, Bn> = F(an ° 7),
by (17. 6) and (17. 8). However
(-] = (-] ' (-]
F(ozn 7 a o7 + ﬁn 8,7
by (17.10), (17.14), where 7' € nr(szn'z), while
(Fo, B.)=a_ o 1"+ o 8JFo,
2n-2
by (16. 2), where 7" € 7Tr(S ). Thus

(17.16) S,7= S, JFo.

Substituting Fo for o, in this relation, we obtain S 7" = S*JFZO’,
while 7' =150 S 7+ 6 S H7, by (17.10) and (17. 14), Since 7' = 7"
and S.6 =0 this shows that

2 2 2
(17.17) S.JF’0=8.(n * S,JF0).

It S, is injective, as when r < 4n - 5, this implies that JF o=7e¢ §,JF0;
moreover 7 = JFo, by (17.16), and so

(o, B) = @ ° JFo+p o S,Jo.
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18-The intrinsic join again

The main purpose of this section is to deform the intrinsic map
of §2 into a map which can be expressed in terms of commutators. The
deformation, which is due to Husseini [61], establishes a conjecture of
Bott [30]. Various relations between the intrinsic join and the Samelson
product are deduced.

Recall that a (r=1, 2, ...) denotes the rth basis vector in
s-space, for s =r, and that our standard embedding u : Gt - GS
(t = s) is that which leaves the last s - t basis vectors fixed. Let
u': Gt nd GS be the embedding which leaves the first s - t basis vectors
fixed, In G

m+n’
commute, Given k, where k= m, n, let dt denote simultaneous rota-

therefore, the subgroups G_ =uG__ and G' =u'G
m m n n
tion through % 7t in each of the planes

@nek+1” Pmtn-k+1) o0 Gy Byiy)-

Thus dt is given by the matrix shown below where ¢ = cos éﬂt,

s = gin 37t

€m-k

ce se

-se ce
k

In the real case when m, n and k are even we note, for future refer-
ence, that dt is given by a unitary transformation.

Let H: G_ X G XI—=G denote the map defined by
m n m

+n

-1
H(x, y, t) = [dty'd , X]
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| ]
where x € Gm, y € Gn and y'=u'y € Gm+n' The commutator

m-k’
in Gn/Gn-k' Also H(x, y, 0) is trivial and H(x, y, 1) € G

for all x, y, and so H induces a map

depends only on the coset of x in Gm/G and on the coset of y

m+n-k’

g: S0 0] o

A ) - .
m,k n,k m+n, k

Recall that the natural projection

X :Om,k * On,k-’s(om,k ~ On,k)

is a homotopy equivalence. Bott conjectured that the composition

h'=gx : O 0]

m,k * On,k-’ m+n,k

was essentially the same as the intrinsic map h of 8§2. We shall prove,

following Husseini, that
(18.1) h'=n(T 1),

where T denotes the self-map of 0m which changes the sign of all

k
b
the vectors in each k-frame. There is also a relation between g and
the commutator map

¢: G'm ~ G'n - G'm+n-k’

given by c(x, y) =[x, y] =1y, x]'l, where x € Gm’ y € Gn. Consider

the transgression operator

a:a(SG  ~ G), G G_~G,G

-7
m+n, k) m n’ m+n-k)

in the homotopy exact sequence of the fibration

G =0

-G .
m+n-k m+n m+n,k

After referring back to the definition of h we see that
(18.2) afgsp) ) = {c7 '},

~ G denotes the smash product of the

T .
where p': Gm ~ Gn -’Gm,k n,k
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projections.

To prove (18, 1), consider the deformation

HS:GmXGnXI-’Gm_'_n (0=s5=1)

of H which transforms (x, y, t) into

-1

" 1
d1-2)¥ "d1-5)¢%

_1 -
”
AN e

" -1 s . _ .
where y" = dlyd1 . Recall that the projection p = Prtn’ Gm+n-’0m+n,k

is given by evaluation at the point v,s Say, where

v a

0 = (am+n-k+1’ e m+n)

is left fixed by Gm+n-k'

P X € Om,k’ Py € On, Kk Moreover pHS is independent of x when

Now pHS depends only on the cosets

t=1 andof y when t= 0. Therefore pHS induces a homotopy

Ks : Om,k * On,k -’Om+n, K’

such that K0 = gx = h', To complete the proof of (18.1) we check that

K1 = h(T % 1). Write u = -dlv0 = (-am-k+1’ cee

— ” — — —
xv, = v0 while y uy=u. Then P X= xuo, Py=yv, where

, -am), so that

X € Gm, y € Gn' Also
p— ] n']- -1
K (xu, yv , ) =y"xd,(y" "d "v )
— "
=y xdtu0

= (-xuocos wt, yvosin wt).

Thus K1 = h(T % 1) and the proof of (18.1) is complete.
From (18. 1) and (18. 2) we obtain the useful relation

(18.3) Apy'(p,a + p,f) = -(u, @, u,B),

for a € Tli(Gm), B e le(Gn), as shown in the following diagram.
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m(Gy) X 7,(G,)

p*XI/ \u*xu*

7Ti(om,k) % 7Tj(on,k) ﬂi(Gm+n-k) % ﬂj(Gm+n-k)
l l ()
T45+1Cman, & N 7+ Cmtn-td

The remainder of this section is devoted to establishing some further
relations between the intrinsic join and the Samelson product. For this

purpose it is convenient to introduce another pairing

1(G G

ﬂi(Gm’ G'm-k) x ﬂj(Gn’ G'n-

K ™ "i+3+1Cm+n’ Cmtn-k)
defined as follows, Consider the map

-1

H :G XG XI—=G
m n

m+n’

where H is as before, so that
_1 ' _1
H vy, t)= [X, dty dt ]
We see at once, from our previous remarks, that H-1 induces a map

L:(G_+xG,G_xG uG *G )= (G G
m n m n

n-k m-k m+n’ m+n—k)'
The ordinary relative join is a pairing of Tli(Gm, Gm-k) with

Tl],(Gn, Gn-k) to

T’1+j+1(Gm * G'n’ G'm * G'n-k v G'm-k * G'n)'

The new pairing, which we denote by *', is defined by applying the in-
duced homomorphism L, to the relative join. If we identify

TI*(Gr, Gr-k) with Tl*(Or,k) in the usual way, for *r=m, n, m + n,
we obtain from (18. 1) that

(18.4) 0" ¢=-(u)"(0 % 9),

where 0 € ﬂi(om, k)’ o€ T’j(on, k) .
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When m = n =k there is an interesting identity due to Leise
[95] as follows, Given elements « € Tlp(Gn), Be qu(Gn), 3 Tlr(Gn) we
can construct elements of Tlp+q+r (02n, n
we can take the relative Samelson product of one element with the intrin-

) in two different ways:

sic join of the other two, or we can take the intrinsic join of one element
with the ordinary Samelson product of the other two. According to Leise

[95] these constructions are related by

p+q+r pq+p+r+1l

(18.5) a (B, v»=(-1) {axB, v)+(-1) (B, axy).

To prove this, notice first that dt in the present case reduces to the

matrix

where ¢ =cos %ﬂt, s = sin %ﬂt, as before. Now z'= dlzdll, for any
vl -1

Z € Gn’ hence dtz dt = d1+tZd1+t' -

a, B, y by maps f, g, h, where f: (Ip, Ip) - (Gn’ e), etc; and write

Represent the given elements

-1 . .
fs(x) = d1+s(fx)d1+s, where x € Ip, s €. Consider the homotopies

Ip+q+r+1 ip+q+r+1
H

kt, lt, mt . ( )-’ (Gzn, G )

n
which are given on x eIp, y qu, z eI and s, t el by
-1
kt(x’ v, Z, 8) = [h(tZ)fs(X)h (tZ), [gy, hZ]]
-1
lt(X, y, 2, S) = [fs(tx)g(Y)fs (tX), [hZ, fsx]]
-1
m. (%, ¥, z, 8) = [g(ty)h(z)g "(ty), [{x, gy]l.

The product kt . lt - my is trivial when t=1, by (15.1). Taking t=0

it is easy to check that l0 represents
(_1)p(q+r)<ﬁ, y &' o),

that m0 represents

S(IFPTARAL g )
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and that k0 represents
+
-(-nPe pr(ﬁ, v *' a,

Hence the sum of these elements is zero and by using (18. 4) and the
commutation law we arrive at (18, 5).

In 82 of [75] it is stated, without proof, that the Bott suspension
acts as a derivation with respect to the intrinsic join. Although I have
no reason to doubt the truth of this assertion I have not been able to find
a short and convincing proof. Let us leave this aside as a conjecture,
therefore, and content ourselves by establishing a useful special case,

namely

Theorem (18.6). If a € "p(VZm, o) 2nd

Be 1*qu(Wn, k) Ca (V k) then

Tq" 2n, 2

F(a « B) = (Fa) = B.

Recall from §6 and 8§17 that the Bott suspension is defined through

conjugation by bt =e, COos mt + b2nsin mt, which lies in the centre of Un'

2
Also recall from earlier in this section that dt is a unitary transforma-
tion in this case, To prove (18, 6) we represent «, S8 by maps

£:0°, )= ©

.md 34
o’m’ 02m-2k)’ g: (I ’ I )-’ (Un, Un_k)-

Consider the homotopy

gu : (Ip+q+2, ip+q+2) - (© o

2m+2n’ 2m+2n-2k)

defined for x eIp, y qu, s, t, uel by
-1
£,x, ¥, s, ) = [flux)b (f(ux)) °, [fx, g_y]],

where gs(y) = dsg(y)d;I. Clearly go represents F(a ' 8). Now
gs(y) € Un and so commutes with bt' Hence it follows from (15. 1) that

§1 . h" is constant, where

h"(X, v, 8, t) = [gsy, [bt’ fx]]-
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But h" represents -3 «' Fa and so, using (18. 4), we obtain (18, 6).

As an application we give an alternative proof of the key formula

(17.10) for Fan. The case n= 2 is deduced from (17. 6), as before.

Omitting n = 3, for the moment, let n = 4, Then

a =0 x
n 2 ﬁn-2’

By=8,%B

cVv we obtain

Since ﬁn-2 is represented by Wn- 2n-4,2

2,1

Fan = Foz2 * ﬁn-2’ by (18. 6),
=(a,°n-B)xB ,

=a °n- ﬁn,
as required. This shows, in particular, that

Fa}*ﬁ2=Fﬁ5=as°17—[35=(013°17-ﬁ3)*ﬁ2,

hence Foz3 =a - n- ﬁ}, by the generalized Freudenthal theorem.

completes the proof,
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19-Homotopy-commutativity

Let G', G" be subgroups of a topological group G. The Samel-
son product in 7, (G) determines a pairing of Tli(G') with 7.(G") to

(G). We call this the Samelson pairing and continue to use the (,

m. .
i+j

notation. Of course the pairing can be defined directly through the com-

mutator ¢ : G' ~ G" =G, If c¢ is nulhomotopic we say that G'

homotopy-commutes with G" in G. This cannot happen unless the

Samelson pairing vanishes.

Since Gn is conjugate, in G to a subgroup G;l which com-

)
mutes with Gm’ it follows at once thl:a.lt-'-nGrm and Gn homotopy-commute
in Gm o’ for all values of m and n. The purpose of this section is to
investigate, in each of the three cases, whether this result can be im-
proved. We follow James and Thomas [86] in the real case and Bott

[20] in the others.

Let us begin with the unitary case and consider the exact sequence

Py o1, 2
Totr1 ) = Ty 87 7) = my(UY = 0.
For t =1 it has been shown by Bott [27] that coker p, = 112t(Ut) is
cyclic of order t!, and this holds for t= 0 under the convention 0! =1,
Take t=m +n- 1, where m, n=1. Choose «a €7 (U_) sothat
2m-1'"m
p,o generates the image of p_, and choose S € ﬂ2n-1(Un) similarly.

Then it follows immediately from (18, 3) that
(19.1) {a, BY=(m- D! (n- Dy

where y generates 112t(Ut). Thus (@, 8> #+0 unless m=n=1, and

we obtain

Proposition (19.2). Let m, n=1. Then Um and Un homotopy-

commute in Um ifandonly if m=n=1,

+n-1
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Turning to the symplectic case, we recall from [27] that
114t+2(Spt) is cyclic of order (2t - 1)1 or (2t - 1)!2 according as t
is odd or even. Again the results of the previous section are used to

compute the Samelson pairing and we obtain

Proposition (19, 3), Let m, n=1, Then Spm and Sp_ do

not homotopy-commute in Spm+n-1'

In the real case the problem is more subtle, and has not yet
been completely solved, Let us describe the pair (m, n) as irregular

if 0m and 0n homotopy-commute in 0m as regular if they do

+n-1’
not, The pair (m, n) is irregular whenever m + n = 4 or 8, since then
o is a retract of O

m+n-1 m
We shall prove

n Are there any other irregular pairs?

Theorem (19.4), Let m+ n+#4or 8 Then (m, n) is regular
if m or n is evenor if d(m)= d(n), where d(q), for q = 2, denotes the

greatest power of two which divides q - 1.

Thus the answer to our question is negative for m + n < 12, The
least pairs for which the answer is unknown are (3, 9) and (5, 7). If
m > 2 then either (m, n) or (m, n-1) is regular, by (19. 4), and so

we deduce

Corollary (19.5). If m+ n> 4 then 0m and 0n do not

homotopy-commute in 0m+n- o

This shows that the least value of q such that 0m and 0n
homotopy-commute in 0q is g=m +n when (m, n) is regular and

qa=m+ n-1 otherwise. Another consequence is

Corollary (19, 6). The pair (m, m) is irregular if and only if

m=2or 4,

Before we begin the proof of (19. 4), there is another problem
which perhaps deserves a brief mention. Let us say that a subgroup H

of a topological group G is homotopy-normal if the commutator map

G ~ H = G can be deformed into H. Excluding the real case when

k=1 it can be shown, as in [74], that G, is not homotopy-normal in
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Gn’ for 1=k< n,
Returning to the problem of homotopy-commutativity, we base
the proof of (19. 4) on

Lemma (19.7). I (m, n) is an irregular pair then there exists
an (m + n)-plane bundle V over S(Pm-1 * Pn'l) for which the mod 2

Stiefel-Whitney class W +4pn 1S DON-Zero.

The fibration p: O, = s? maps P? with degree 1, in mod 2
cohomology. The induced homomorphism p* carries the generator
cq € Hq(Sq) into an element uq € Hq(Oq +1) which transgresses into

the Stiefel-Whitney class w of the universal (q + 1)-plane bundle.

q+l
For this bundle the transgression determines a (1, 1) correspondence,
for each complex L, between equivalence classes of (@ + 1)-plane bundles

over the suspension SL and homotopy classes of maps f: L -’Oq+1'

Further the (q + 1)-st Stiefel-Whitney class of the bundle corresponding
to f is the suspension S*f*u_ € Hq+1(SL) of f*u_ € Hq(L).

Now take L = p™~! *an-l and suppose tgat g = pf, for some
f, where g: pm-1, polagmin-1 4o map of degree one obtained

from

h=psp:0_+0 =sm 1, gt gmtnt

by restriction, Then

f* f*p*c 0,

= = pg*
um+n-1 m+n-1 g cm+n-1 *

and so Wotn * 0 on the bundle corresponding to f. Certainly g can

be lifted to O
m

obtain (19. 7).

Products are trivial in the cohomology ring of a suspension SL,

+n if h can and so, from (18, 2), with k=1, we

For a real vector bundle over SL, therefore, the formula of Wu [165]

for the Steenrod squares of the Stiefel-Whitney classes reduces to
t _r-1
(19.8) Sq Yy = ( t )Wr+t'

If L itself is a suspension then the Pontrjagin square acts trivially in

the cohomology of SL and so
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(19.9) p4(pr) = W4r,

by the second formula of Wu [166]. Here W), denotes the image of w, .
under the coefficient monomorphism Z2 hd Z4, and p4(pr) denotes the
mod 4 reduction of the Pontrjagin class P We now use these results

to prove

Lemma (19,10), Let m and n be even, let m + n= 0 mod 4,
andlet m +n =16, Let V be a real vector bundle over S(Pm_1 *Pn_l).

Then the Stiefel-Whitney class w

of is zero.
m+n — V is zero.

By suspending the join of the coverings

m-1_ ,m-1 n-1 n-1

s p s ap

we obtain a map Sm_'-n -+ SL of degree 4, Write m + n = 4r. Bott [27]
has shown that the Pontrjagin class P, of a bundle over S4r is always
divisible by (2r - 1)!. We have r = 4 and so the mod 4 reduction of
P, is trivial in the case of V. The base of V is a double suspension
and so (19.9) applies. Therefore w!' = 0, and since there is no

torsion in dimension m + n it folloul:;+trlllat Wotn = 0, as asserted,
In view of (19. 7) we deduce that pairs (m, n) are regular if they satisfy
the hypothesis of (19, 10).

The proof of (19. 4) is completed by application of (19. 8), as

follows. A basis for the mod 2 cohomology of the space

n-1

m-1 . Pn—l) - SZ(Pm-l ~ P )

S(P
consists of the elements

2, 1 j . .

o'(x ®y) (0<i<m, 0< j< n),

where x generates Hl(Pm_l), y generates Hl(Pn-l) and o= S*,
Let E denote the subspace spanned by these basis elements where i
and j are even. Then Snt C E, by the Cartan formula, and in par-

ticular SqlE = 0, We prove

Lemma (19.11). Let u e B (S®™ ' « P*" 1)), where r is

evenand r< m+n If Sq'u=0 then u €E.

126



We have u=v mod E for some element v of the form
— 2, 1o ]
V= Eaijo x ®y") (aij € Zz)’

with summation confined to odd values of i and j. It follows from the

Cartan product formula that

j+1

sqlv = Eaijoz(x1+ oy +x @yt

since i and j are both odd. By hypothesis Sqlu =0 and so Sqlv =0
since Sq1E=0. Also i+j+2< m+n and so either i+1< m or
j+ 1< n. Hence all the coefficients aij are zero, Thus v=0 and
u € E, as asserted,

Now consider the Stiefel-Whitney classes w_, w_, ... of any
vector bundle V over S®P™ 1 « P 1). We prove b

Lemma (19,12), Let r=m+n and, if m + n is a power of
2, let r< m+n, Then w_ €E.

Since S(Pm-1 * Pn-l) is 3-connected, the lemma is trivial for
r=23 Let r=4 andwrite r =5 + t, where s is a power of 2
and 0 =t< s. By (19. 8) we have that

k
Sq"Wy 11 = Wop 1 q k=1, 2, 4, ..., 8/2).

_ . . _ PR
Hence w a1 = 0, by induction, since w, = 0. But Wil = Sq twS by
(19. 8), smce s is even, and W € E, by (19.11). However SqE C E

and Sq W =W, by (19. 8) agam, which proves (19.12). Finally we prove

Lemma (19.13). Suppose that m =as+ 1 and n=bs + 1,

where a, b areoddand s =2 is a power of 2. Then Wo4n = 0.

For consider the operator
st 8t 4t 2t
a=8q" °...°8] o83 o 8q

where 2t=a +b. If i +j=a+ b the Cartan product formula yields

ald ® yh = x> @y,
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which is zerounless i=a and j=Db., Since a and b are odd this
shows that ou=0 if ue€eE and dimu=a+b + 2. However
Woen = Waipio by (19.8), since a + b is even; and w
by (19. 12). Therefore LA 0, as asserted.

To obtain (19. 4) we combine (19. 7) with the various lemmas we
have proved. We use (19.12) when m + n is odd, also when m + n is

not a power of 2 and both m and n are even. We use (19. 13) when

atb+2 € B

both m and n are odd. The remaining cases are covered by (19. 10)
and so (19. 4) is established.
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20-The triviality problem

Throughout this section we use cohomology with mod 2 co-
efficients. Recall (see [6]) that the algebra of Steenrod squaring opera-
tions is generated by the operations Sql, qu, Sq4, qu, +«. . This result
has been refined by Adams [1] as follows. Let K be a complex and let
s= 2r+1 for some r = 0. We describe an element u € Hn(K) as a
Sq°-class if Squ=0 for t=1,2, ..., s- 1, while Sq°u # 0. Suppose
that u satisfies this condition for some r = 3, Adams shows that there
exist _cohO{nology classes uij l=i=j=sr; i#j-1), of dimension
n+ 2" +2 -1, such that

u (s = 2r+1)

(20.1) Sq°u= Za i

ij

where the a,, are elements of the Steenrod algebra having degree
2r+1 +1- 211J- sj. Since a__ 1is of degree one it follows that either
Squn+S_1(K) #0 or Hn+t(K) 40 for some t=21+2 -1
(l=i=j=r;i#j-1; i#r). For our purposes, however, it is the
dual of Adams' result which is more convenient, and we state this as
Theorem (20.2). Let ue Hn(K) be a qu-classj where s = 2r+]

and r = 3. Then either Sq'H™K)+#0 or H"'S™*

(K) # 0 for some
t=2"+21_1 O=i=sj=r;izj-1; i#1).

If the Whitehead square woEnm n_1(Sn) vanishes, there exists a

2
map s?x g" =" of type (1, 1), hence a map SZIH-1 - Sn+1 of Hopf

invariant one., The mapping cone of the latter has non-trivial Sqn+1.
Hence Adem [6] showed that n + 1 is a power of two and then Adams [1]
that n=1, 3 or 7, using the machinery described above, The argument
which follows is based on the same procedure.

Let V be an (n- k - 1)-connected complex, where n> k=1,

and let B e Tln_k(V) be an element such that the induced homomorphism
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g* Hn-k(V) - Hn-k(sn-k)

n-k

is non-trivial. Suppose that there exists an element y € 7 S )

such that

2n-k-1(

(a) Bey=0,
(20. 3) {

() S]:Y =W
Write B' = Sl:ﬁ € Tln(SkV). Then
[8, 8] = Byw_= S5(B° ) =0,
by (20. 3), and so there exists a map
65" x & » sy
of type (B', B'). Consider the mapping cone L = e2n+2 ] Sk+1V of the

map

2n+1 sk+1

obtained from 6 by the Hopf construction. In the cohomology exact

sequence

* ik

1 (L, 5Tl o H' (L) . 1 (),
let 2 e H2n+2(L) denote the image under i* of a generator of the
relative group. Now p*o¢ # 0, by hypothesis, for some element
g€ Hn-k(V), and so B'*¢' # 0, where o' € Hn(SkV) is the k-fold
suspension of 0. A straightforward calculation, as in (1. 4) of [141],

shows that

n+1
(20.4) Ax=pupu=S8q H,

where pu € Hn+1(L) is the element such that j*p = S*0. We need a

condition to ensure that A # 0, such as

Lemma (20, 5). Suppose that Hzn'k(V) is spanned by decom-
posable elements. Then L can be constructed, by suitable choice of
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0, sothat x #0.

Forlet T= e2n-k U Sn-k denote the mapping cone of . By

(20. 2a) there exists a map t: T =V such that t|Sn-k represents .

Now T has trivial cup-products since n> n - k. Hence

* H2n-k 2n-k

t* ; (V) =H (T)

is trivial, and hence so is
S*t* : 1Y) - B2,

By (20. 3b) the 2n-cell of SkT = e2n U Sn is attached by the Whitehead
square w . We can therefore regard SkT as obtained from S" x s"

by identifying axes in the usual way. Choose 6 = Sk t o ¥, where
v:s"x s =S

is the identification map. Then
o* : B (s*v) = H2%(s" x s

is trivial, and hence so is

+
:H2n 1(sk+1 2n+1, _2n+1

o* V)—=H (S ).

Since L is the mapping cone of ¢ this implies that X # 0, as asserted.
Now suppose that V contains a subspace P such that P is an

S-retract of V. Also suppose that § € l*Tln_k(P), where I : P C V.,

Choose r > 2n - k such that a retraction p : SV = s'p exists, and

consider the complex

er+2n—k+1 U SrP

obtained from Sr+2n-k+1L by identifying points of SrV with their
images under p. With all these hypotheses, including (20. 3), we see

that (20. 4) and (20. 5) imply

Proposition (20. 6). Suppose that Hzn-k(V) is spanned by

decomposable elements. Then for some integer r there exists a com-
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plex K of the form

er+2n-k+1 U SrP,

such that Sqn-'_1 r+n- k(K) # 0,

We apply this to prove (1.11), with n and k increased by one.

By hypothesis V is trivial, as a fibre space over s" , hence

n+1,k+1

retractible. By (16. 7) there exists an element y € 112 ke 1( n-k) such

that Sk'y W and such that g ¢ y =0, where 8 671 (Vn k) is the
H

class of the inclusion. Moreover decomposable elements generate

2n k(V ), by (3.8), Inview of (7. 10) we can apply (20. 6) to the pair
,k

P, ) and obtaina complex K of the form efHen-ktl  orp

(Vn K’ n+1 r+n k r+s n, k
such that Sq (K) # 0. Since H (Ky=0 for s=n, ..., 2n-k
the Adem relations imply that the interval [n-k + 1, ..., n+ 1] con-

tains a power of two. But n+ 1 = 0 mod 2° (k+1)

, since the fibration
admits a cross-section, and so the interval [n-k + 1, ..., n] con-
tains no power of two. Therefore n + 1 is a power of two, which
proves the first part of (1. 11).

In the second part k is odd, hence n - k is even, and so
sq'H*¥*T(K) = 0. This enables us to apply (20. 2) and obtain an
immediate contradiction unless n=1, 3 or 7. This completes the proof

of (1. 11).

Reprinted with permission of the publisher American Mathematical
Society from the PROCEEDINGS of the American Mathematical Society.
Copyright © 1971, Volume 29, pp. 151-158,
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21-When is P, | neutral?

This section is based on joint work with Sutherland [85]. Recall

that d denotes the self-map of P defined by reflection in the last

n,k

coordmate hyperplane, We say that P is neutral (elsewhere out-

n, k
simple) if d =~ 1  and define S—neutral s1mi1ar1y. If n and k are
both odd then P n,k is neutral, as remarked in §7. If n is even then
d has degree - 1 on the integral homology H ( n k) =Z, and so

’

Pn Kk is not S-neutral. Thus the interest re51des in the case when n
H

is odd and k even. Notice that Pk 1k= Pk is neutral for all even
H

values of k. In the course of §6 we have already proved

Proposition (21.1). Suppose that P 0k is S-neutral, where n
’

is odd and k even. Then P and P are S-neutral

m+n, k m+k-n, k 28 °-0ewTas,

whenever m = 0 mod ﬁk

Here ﬁk is as in (1. 10). Now consider V n,k

under the outer automorphism which changes the s1gn of the 1ast Tow
n, k - Vn, k

map it follows at once from (3. 4) that P n,k is neutral if V n, k
neutral and n = 2k, However, the following result is more useful, Let
n be odd and k even, sothat A= £ by (1.1), Let m =0 mod é‘k, with

asaZ -space

and column of each matrix. Since the inclusion P is a Zz_

is

m large, so that there exists a homotopy-equivariant section
m-1
g:8S ind Pm, = Let

m-1
9(1 ~ g) : S(Vn,k) ~8 -’Pm+n,k

be defined as in §7. Then ¢(1 ~ g) is homotopy-equivariant, by (7. 6),
and so the restriction

sp_ ) ~s™lap

n,k m+n, k

isa homotopy-Z2 equivalence. By composing ¢(1 ~ g) with a homotopy
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inverse of the restriction we obtain

Proposition (21.2), Let n be odd and k even. Then P xls
14

is S-neutral if Vn,k

a homotopy-Z2 S-retract of Vn Hence P

N n, k

is neutral.
The relationship between neutrality and S-neutrality is clarified
by

Proposition (21, 3). Let n be odd and k even, Then Pn
is neutral if and only if Pn
’

,k

" is S-neutral and n> 2k.

The 'if' part is suspension theory; there remains the problem of

showing that n > 2k whenever Pn Kk is neutral. After proving this,

’
in the next few paragraphs, we go on to establish

Proposition (21.4). Let n be odd and k even. If Pn Kk is
’

S-neutral then either n+ 1 or k- n+ 1 is divisible by 2t, where t
is the least integer such that 2t > k.

Clearly (1. 12) follows at once from (21.2) and (21.4). As a
preliminary to proving these results, consider the map

WP X s'=p which is given by
H

n+l1,1
w([xl, eeey xn], ct) = [xl, cees Xy, X COS T, xnsin at],
where ¢, = (cos 2mt, sin 27t) € s'. since ¥ maps (Pn 1- e) X (S1 -e)
’

homeomorphically onto (P - e) it follows that

n+l,1

L - 1
(21.5) y*:H (Pn+1,1) H (Pn,1><S)

KT Phi1, k1

of the inclusion u : Pn,k nd Pn+1,k+1 into udn which is given by

in mod 2 cohomology. Next consider the homotopy f :Pn
’

f([xl, ., x ], )= [xl, ceey X5 X C€OS wt, xnsin mt].

o~ ' . X
Suppose that dn 1 under a homotopy f 'Pn,k I-’Pn,k. We can

fit f and uf' together, in the obvious way, to produce a homotopy

:P . xg!

n,k P

n+1,k+1’
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such that 6(x, e) =ux (x € Pn By construction g6 =~ y(q X 1), as

)
k
shown in the following diagram: where q denotes the natural projection.

[

1
e ———————
P8 P+l kt1

qxll l a

1
P X8 —_>Pn+1,1

n,1 v

In mod 2 cohomology, therefore, we have

.} ~ D 1
(21.6) o0+ :H (Pn+1,k+1) H (Pn,k X 87).
— r
Let a, (r=n-k, ..., n generaste H (Pn+1,k+1) and let ﬁs
(s=n-k, ..., n-1) generate H (Pn k)' The conditions on 6 imply

’

that

(a) o*a =4 ®1,
(21.7) { n-k  “n-k

(b) e*an = ﬁn-l ® v,

where ¢ is the generator of Hl(Sl). If n-k=<r< n then B*ar

equals either Br ®1 or ﬁr 01+ ﬁr-l ® 9, If further r is even then
1oy Call
Sq°6 1= Sq (ﬁr-l ® 1),

by (21, 7a) when r =n -k + 1 and since Sqlﬁr_2 =0 when r> n-k+1,

Hence
* =
(21.8) o a ﬁr ®1 (r even).

If n =2k then an = hence

-k %

ora = (8 , ®1). (B ®1) =0,

n-k

contrary to (21. 7b). This contradiction completes the proof of (21. 3);
we now begin the proof of (21. 4).
For any space X we describe a pair x, y of mod 2 cohomology

classes as evenly connected if Sth =y, for some even integer t. This

non-symmetric relation generates an equivalence relation; we describe
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X, y as evenly related if they are equivalent in this sense. We prove

Lemma (21.9). Let n be odd and k even. Then ax and

) unless either n or k- n is

a are evenly related in H*(P

T n+1,k+1
congruent to -1 mod 2°, where t 1s the least integer such that 2 > k.

By (1. 5) the following relations are valid, when defined:

4 _ 2 _
Sq @gi 1= gy ST gy 3= gyin

4 _ _ 2
84 @g; 5= Ugii00 Pgiyq = SA Ygy o

This shows that all the elements a, with r oddand n-k < r < n are
evenly related, Let 2° be the highest power of 2 dividing n-k - 1, so
that n -k = 2° + 1 mod 2571, Then
s
5q Y-k = Yn-k+25

and so « is evenly related to some other class of P unless

n-k t n+1,k+1
25> k. Let 2' be the highest power of 2 dividing n + 1, so that
n= 2t - 1 mod 2t+1. Then
quta =a
n-2t = %p
and so a . is evenly related to some other class of Pn+1,k+1 unless
2 > k. Hence (21.9) follows at once.
We are now ready to prove (21, 4), where n is odd and k even.
Without real loss of generality we may suppose that n> 2k, since if

necessary n can be increased by a multiple of é‘k Therefore Pn K
*

is neutral and so the map @ is defined. If an is evenly related to
o then B*an =0, by (21, 7a) and naturality of the squaring opera-
tions. This contradicts (21, 7b) and so establishes (21. 4).

Finally, still following [85], we apply the results of §14 to prove

Theorem (21, 10), Suppose that the Whitehead square

woem (S™ can be halved, where n is odd. Then P is neutral,

n, k

2n-1
for all even values of k such that n > 2k.

To prove (21, 10), consider the homotopy exact sequence
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A u
n *
‘"n(S )= ﬂn-l(Vn,k) - T’n-l(Vn+1,k+1) =0

Replacing (n, k) by (n, n - k), in (14, 5), we have ALn = kan’ where

Hy : 7y, 180~ 701V, 1

Since v € 2112n_1(Sn), by hypothesis, it follows that the kernel of u,

is contained in 211n_1(Vn Hence the kernel of
’

k)'

Ve T 1P 0 T a1 Py k)

is contained in 211n_1(Pn k)’ by (3. 2). Thus the corresponding coefficient
’

homomorphism
v B a e ) =HNEe 7 (P )
#° nk’ n-1""nk n,k’ "'n-1"" n+1,k+1
is an isomorphism.
Now v = v'rel Pn—l,k-l’ where V' : Pn,k -’Pn+1,k+1 is
given by
v'[xl, ceer X g xn] = [xl, ceer X g 0, xn].
Consider the homotopy ht : Pn,k - Pn+1,k+1 which is given by
h{[xl, cees X1 xn] = [xl, seey X _1COS W, X, sin 7, xn].
] ] 1 3 ”".
By restricting ht to Pn-l,k-l we obtain a homotopy ht 'Pn-l,k-l-’Pn,k

such that hg = I, the inclusion map, and h'l' = dl, where d denotes

reflection in the (n - 1)-st coordinate hyperplane. The obstruction to

extending h{'|Pn_2 k-2 to a homotopy of the identity into d is an ele-
H

ment

n-1
(Pn, K "n- 1(Pn, k))'

The obstruction to extending vh{' |Pn— to a homotopy of v' into

2,k-2
v'd is the corresponding element

' n-1
Vi eHT TR o T P k)
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But v#o: 0, since v'h{' extends to the homotopy h{ of v' into v'd,
and so o =0, since v:# =V which is an isomorphism. Therefore

"
BelPy 2 k-2

P is neutral, as asserted.
n,k

extends to a homotopy of the identity into d, and therefore
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22 -When is Vn,2 neutral?

In this section and the next we shall prove the neutrality theorems
for V., following [76] and [78]. First we take the case k =2. We
?

write Vn 5= Wzn_ 3, to emphasize dimension, and consider the map
H

h - Sn-l % Sn-l _’SWZn-B

defined as follows. If the geodesic distance between points x, y € Sn-1

is equal to #t, where 0 < t< 1, we define
h(z, y) = ((X, z), t),

where z is given by y =x cos mt + z sin nt, The diagonal points are

mapped into the pole 0 of the suspension, and the antidiagonal into the

2n-3 the
H

fibre suspension, the degree of h is #1. Moreover h satisfies the

pole 1. Since h is the projection of a trivialization of ZW

condition

(22.1) (Su)eh=veho (1XT),

as shown in the following diagram, where u is the self-map of W2n-3

which changes the sign of the second vector in each 2-frame, v is the
self-map of SW2n-3 which reverses the suspension parameter, and T
. . n-1

is the antipodal map on S .

1xXT

2n-3 2n-3
Su

2n-3
n_1(SW ). By

performing the Hopf construction on h we obtain an element 8, say, of

Now h is a map of type (+y, £y), where y generates =
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112n_1(SZW2n-3). If we use vh instead of h then, by a standard formula

(see (2.22) of [64]) the element we obtain is equal to
-6+ [S*'}’, S*Y]'
Also T has degree (-1)™ and so (22. 1) implies
2 n
(22.2) (S u)*B +(-1) 6= :I:[S*-y, S*'y].

We use this relation to prove (1, 13), but first some technical considera-

tions are required.

Let ¢: 85 g™ ! (r=2, 3, ...) be amap of degree 2 with

mapping cone Y = Sr-1 §) er. Let n be odd, We regard W2n-3 as a
2n-3 . described in §3. Recall that

Sn_l) is spherical, in dimension 2n - 1, and so swoh 3 i

complex of the form lye
sE™ ! x
spherical, since Sh has degree 1., It follows at once that
vt o SZYn-1 is a retract of SzWZn- 3.

since n is odd, and hence 2m

n n-1
Now T’2n-1(S )= S*772n-2(S h

2n_1(Sn) coincides with the kernel of the

homomorphism
. n +1
Lyt My &) =y (0T
induced by the inclusion. This proves that
. n
(22.3) kerj, = 2112n_1(S ) (n odd),
as shown in the following diagram, where i, j are the inclusions.

n-2 * 2n-3

Ton-38 ) Ton3W )
sil lsi
n 2..2n-3
Ton1S) T Ty 8TWT )

Jx

Similarly ic,¢ =0, for any element ¢ € Ty 3(Sn-2). However

c,9=20+w_ ¢, where ¢' e€m, 3(SZn— 5) denotes the generalized
s : 3 | R | J— o

Hopf invariant of ¢, Either ¢'=0 or ¢'= Non-s 172n_4. Now

AW =W from (7. 4) of [70], hence

n-1=V%p-2 ° Tops
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_ o n-1 n-2
AW, 1° Thp 3= Wn 2 ° Mops r+18 =60

is the transgression, But i A =0, by exactness, and so i*(wn_zo ¢ =0,

° Mon-a0 where A:mw

Since i.c,¢ =0 this shows that

(22.8) 2.1 ("2

«Ton3 ) =0,

We use this to prove

Proposition (22.5). Let n=3mod4 and n= 11, If S;i,¢=0,

where ¢ €7 (Sn-z), then i,¢ =0,

2n-3
We have j*Siq) = Sii*q) = 0, by hypothesis, and so siq; = 2y, by
(22. 3), for some element Y € 7T (Sn). Since n =3 mod 4 we have

SyTon_ 3( n-2) = 112n_2(Sn-1), hence Siﬂ2 3(Sn-2)=S*TI2n 2( )—

m, _1(Sn). Therefore Y = S*é, for some &€ n2n_3(sn- ), and so

¢ - 2¢ lies in the kernel of S,. Hence i,¢ = [0, 7], by (14.5) and
n-2( 2n 3) and Tem (W2 3). Now

ﬂn-Z(Rn-Z) =Z,, as shown in [92], since n=3mod 4 and n = 11. Since
ﬂn(Wzn'3) = Z, this implies that A7 € 211n_1(Rn_2). By (16. 4) therefore

[0, 7] = (o, AT) =0, since 0 € Trn_z(Wzn'3) =Z,, and s0 1,9=0,

(22, 4), for some cem

as asserted.

We are now ready to prove (1. 13), which we restate as

Theorem (22, 6). Let n be odd. Then W2" > is neutral if
and only if the Whitehead square w_can be halved.

1t W2 ? is neutral then u =~ 1, hence S°u =~ 1, hence

[S¢¥» S,¥] =0, by (22.2). However [S,y, S,¥]= j*wn, by naturality,
and so w_ €27, (sn), by (22. 5).
Conversely, suppose that w, € 211 _1(Sn). If n=1, 30or7

then W2n 3 is neutral, as we have seen. If n#1, 3, 7then n=11

and n = 32 mod 4, since n+ 1 is a power of 2. Now pu = p, where
p: w22 =+ ¢ 1 s detined by taking the first vector of each 2-frame.
Since n is odd there exists a deformation h, Yl w?? o

u |Y into the inclusion such that ph is stationary. Since the com-

plement of Yl i W2n 3 isa (2n - 3) cell the separation element
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2n-3
5 = d(u, ht’ 1) € 112n_3(W )

is defined. By naturality

p,6 = d(pu, phy, p) =0,

2n-3

n-1 X n-2
where p, : 112n_3(W )= 2n_3(S ), and so 6 €i.7 (8" ), by

exactness. However

2n-3

$26 = d(s°y, Szht, 1) = (S%u),0 - 6,

2n-3

since 0 € 112n_1(SZW ) is representable by maps of degree 1, and so

(22.7) S26=+#[S,y, S,

X : n
by (22.2). But [S,7, S,7] =2J*Wn = 0, by (22. 3), since W €2ﬂ2n_1(sn)_2
by hypothesis. Therefore S,6 =0, by (22.7). However ei*ﬂ2n_3(s ),

as we have seen, and so § =0, from (22, 5). Therefore ht can be ex-
tended to a homotopy of u into the identity and so w2 is neutral, as

asserted,
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23-When is Vj, | neutral?

The purpose of this section is to prove (1.14), which gives a
Kk when k =2, 4 or 8,

Some preliminary material about loop-spaces is required. We work

necessary condition for the neutrality of Vn
i

in the category of pointed spaces and pointed maps but omit the word
pointed throughout. As before we denote by #(X, Y) the set of homo-
topy classes of maps X =+ Y. We regard the suspension functor S and
the loop functor € as adjoint, in the usual way. We regard u(SX, Y)
as a group, using track composition, and (X, QY) as a group, using
loop composition, so that by taking adjoints we obtain a natural isomor-

phism
£:n(SX, Y) = (X, QY).

We use the notation indicated in the following diagram for the structural

maps associated with the product functor.

p q
PSPxQ3
2 q'

Given elements a € n(P, X), 8 € 71(Q, X) we say that an element

6 en(PXQ, X) isof type (a, B) if a=p'*0, B=q'*6. When P and
Q are suspensions there is a well-known necessary and sufficient con-
dition for the existence of such an element 6. Suppose that P = SK,

Q = SL, where K, L. are complexes. Consider the elements

(o € 1(K, QX), £8 € n(L, 9X). Then (cf. (15.5)) we have

Proposition (23, 1), There exists an element 6 € 71(SKX SL., X)

of type (o, B) if and only if p*f{a commutes with q*£8 in the group
(K X L, €X).

Thus it is useful to determine sets of commuting elements in this

group, as in
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Proposition (23. 2). Suppose that K is a suspension. Then the

elements of the kernel of

q'*: (K X L, @X) = n(L, X)

commute with one another.

For consider the complex M obtained from K X L by collapsing
the axis e X L to a point. Since K is a suspension so also is M,
hence #(M, ©X) is abelian. However, the kernel of q'* coincides with

the image of
r* : a(M, 9X) = 7(K X L, £X),

where r denotes the collapsing map, and so (23. 2) follows at once.
Similarly, consider the self-map u of K which is given by track

reversal (i. e. transforming the suspension parameter t into 1 - t).

Let v denote the self-map of the smash product K ~ L induced by the

self-map ux 1 of KX L. Since v* acts on n(K ~ L, 2X) by group

inversion we obtain

Proposition (23, 3). Suppose that K is a suspension. Then

(u X 1)* acts by group inversion on the intersection of the kernels of

7K, ©X) « 1(K X L, 9X) = 7(L, 9X).
P al

Let Y be a space andlet j:Y = QSY denote the adjoint of the
identity on SY. Write v = Qu, where u: SY =+ SY is given by track
reversal. Then v, constitutes an automorphism of the group
7(X, QSY) for any space X. If 0 € n(X, Y) then

< . -1
(23.4) v,j,(0) = (,0) 7,

from the definition of loop reversal, where
i 2 (X, V) > (X, QSY).

Now let A, B, C be complexes and let h be a map as shown

in the following diagram, where u denotes track reversal.
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h
SA X 8B — > §C

o] s

SA X SB —— > SC
h

With reference to the class y € 7(SA X SB, SC) of h we prove
Proposition (23.5). Let y € 7(SA X SB, SC) be an element of

type (o, B), where o € n(SA, SC), 5 € 7(SB, SC). If u,(y)=(uXxX1)*y
then there exists an element .;, € TI(SZA X SZB, SZC) of type (S,a, 8.8).

Write o' =j,y, where j:SC = QSZC, and write o' = p*j,a,
B' = q*j, B, sothat a', B', o' € 7(SA X SB, QSZC). Then o' is of type

(p'*a', q'*B") and so, applying (23. 2) twice over, we obtain
(23.6) a'(B'y ) =By e =BG ) = (v anp.

Consider the automorphisms (u X 1)* and v, of 7(SAXSB, QSZC),
where v = Qu. It follows at once from the hypothesis of (23, 5) that
these automorphisms agree on ' and hence, by naturality, on &' and

B'. Therefore

(23.7) @x ¥y = v, (apyh.
By (23. 3) however

(wx D*epy ) =y e

Also it follows from (23, 4) that v, acts on a', 8', »' by group inver-

sion, since these elements lie in the image of j,, and so
V*(a'ﬁ"y'-l) = av'lﬁv'l,yv.

From these last three relations we obtain
a'ﬁ"y'-l — 'y'-lﬁ'a' — ﬁvav,yv'l ,

by (23.6), and so a' commutes with B'. But
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a''= p*gs*a, ﬁ' = q*gs*ﬁ,

since &S, = j,, which commutes with p*, q*. Hence and from (23. 1)
we obtain (23, 5).

From now on we work in terms of cohomology with mod 2 co-
efficients, Let y € (A X B, X) be an element of type (a, B8), where
a e (A, X), 8 e€n(B, X). We say that y satisfies the H'-condition
(r > 0) if both the induced homomorphisms

a* B*

H'(A) « H'(X) = H'(B)

are non-trivial,

In particular, consider the real Stiefel manifold V as an

n,k

(n - k)-sphere bundle over V 1’ in the usual way. Recall from §12

n, k-
that the (k - 1)-fold fibre suspension ok- 1Vn K
’

(n - 1)-sphere bundle. Choose the trivialization

is trivial, as an

k-1 n-1
z Vn,k"S XV

-

n,k-1

given by the retraction p as in (12, 4), (12.5) and let

n-1 -1
heshxy -8 Vo k

’

be defined by composing 7! with the natural projection of the fibre
suspension onto the ordinary suspension. I assert that the homotopy class
vy of h satisfies the H" - condition.

Since p is a retraction it follows that h maps the axis Sn-1 X e
-1

C

9 n-k+1,1 s* Vi, k*

generates Tln_l(Sk v, k)’ Thus o* is non-trivial. Suppose, to obtain

homeomorphically onto sy and hence that o

a contradiction, that B* is trivial. Then im p* C im h*, where
1gk-1y B a1 -1 P* o a-1.n-1
- - -1, .n-
CHRANES SHCE R AR S Cile}

But hg is constant, where g = f|Sk_2 XV and so g*h* = 0, Hence

n, k-1’
g*p* = 0, where ’
*
g1l P Bl oy g 2wy
n7k'1 n,k-l :
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On the other hand pg = p|Sk_2 XV ko1
_ ’

the axis e X V_, ., onto S " as in the standard fibration. Hence

g*p* # 0 and we, have a contradiction, Therefore f* is non-trivial and

and so pg, by (12.5), maps

so vy, the homotopy class of h, satisfies the Hn'l-condition, as asserted.

These results are now used to prove

Proposition (23, 8). Let n be odd, k even and n = 2k - 2,
Suppose that Vn

is neutral. Then there exists an element
stv
n’

which satisfies the Hn-condition.

k

’

- n
fen(S X SPn-l,k-l’ k)

Since Pn k-1 is (n - 1)-dimensional and (n - k)-connected the
k-

condition n = 2k - 2 ensures that Pn k-1 can be desuspended. Hence
k-

(23. 5) applies to the class

n-1 -1
6 en(s % Pn,k-l’ sk Vn,k)

of the restriction of h, and shows that there exists an element
sv
n,

of type (S,a, S*ﬁo), where (a, ﬁo) is the type of 6. Since h satisfies
the H™ !_condition so does 0, by (3.2). Hence 0 satisfies the H"-

condition, which proves (23, 8).

- n
0 en(S X SPn,k-l’ X

For any cellular map f : Sn+2P the mapping

n,k-1" SPri k
cone K= Cf is a (2n + 2)-dimensional n-connected complex. The mod 2
cohomology of K is given by Hr(K) = Z2 for n+1=<r=n+k and
2n-k+4=r=2n+2 while H(K) =0 for n+k< r< 2n-k+ 4.
Of course the action of the Steenrod squares depends on £, as well as

on n and k. We prove

Proposition (23.9). Let k=2, 4or 8. Let n be odd and let

nz2k-2 If Vn is neutral then there exists a cellular map

k

’

f.8"?%p SP

-
n, k-1 nt+k, k

of which the mapping cone K=C £ has the property that
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+1 n+1 2n+2
sq" (K) = (K).
To prove (23. 9) we first observe that there exists a map
f: SkV -V such that
n, k

n+k,k
-} SkV
~H n,k)

n
(
In fact f can be taken to be the composition

txl h

-1
s* *Vok = Vigk * Vnk T Vo ke

f* :H (V

nt+k, k)

where t is a cross-section and h the intrinsic map. From (23. 8) the

element

*6 € n(s™ x SP \s

n, k-1’ "n+k, k)

<o n . . . .
satisfies the H -condition, Since the pair (Vn +k, K’ Pn +k, k) is 2n-

connected and since S X SP S1.k-1 has dimension 2n it follows that
b

f, 0 lies in the image of

i, : 7(s" x sP P - a(S" X SP

n,k-1' Tn+k, K’ v

n,k-1" Vn+k, K

where i denotes the inclusion. Moreover ¢ satisfies the Hn-condition,
where ¢ = i-lf (3 By performing the Hopf construction on ¢ we obtain
n+2 SP ).

n, k-1’ " n+tk, k™
of a representative f of w Since H2n(P n+k, k) = 0 and since ¢ satis-
fies the H -condition it follows easily (see (1. 4) of [141]) that Sqn-'-1

an element ¥ € 7(S Consider the mapping cone K

an isomorphism, as asserted.
Finally we use this result and the Adem relations to prove (1, 14),

which it is convenient to restate as

Theorem (23.10). Let n be odd and let n= 2k - 2 where

k=2, 4or8 If Vg ls neutral then n+ 1 is a power of 2.
H

When k = 2 the conclusion is immediate, When k = 4 the Adem
theorem shows that either n+ 1, n-1 or n- 3 is a power of 2, But

=5 or 7 mod 8, by (1.12), and so we have a contradiction unless n + 1

is a power of 2. When k = 8 the Adem theorem shows that one of n+ 1

n-1, ..., n-11 is apower of 2. Also n =7 or 15 mod 16, by (1. 12),
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If n=7mod1l6 and n = 23 a brief calculation, using (3. 1), shows
that the Steenrod algebra contains no element of degree n + 1 which

acts non-trivially. Hence n+ 1 is a power of 2, as asserted.
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24 -Further results and problems

In this final section I give a brief account of a few of the many
other topics I should like to have covered in this volume. The small
collection of problems at the end may also serve to introduce some
further material; a good many unsolved problems have already been
mentioned in the text.

I have already referred, in §2 above, to the literature on the
cohomology theory of Stiefel manifolds, especially Chapter IV of the
Steenrod-Epstein memoir [134]. The corresponding results for complex
K-theory were obtained by Gitler and Lam [50], but unfortunately these
have yet to find an adequate application. It may be that additional com-
putation of the Adams operations, or the extension of their work to real
K-theory, might be fruitful, particularly in relation to the neutrality and
triviality problems. The Mahowald memoir [100] is the main source of
information about the homotopy groups in the real case; some other useful
references are given in the bibliography.

The Lie groups Spn and R (n = 1) have isomorphic co-

2n+1
homology rings over Zp (p odd), moreover the isomorphism is compa-
tible with the reduced power operations. This observation led Serre to

conjecture that Spn and R have isomorphic homotopy groups

mod €, where € denotes tﬁgtzllass of 2-primary groups. When n=1
this is clear, since of course Sp1 is the universal covering group of
R}. Serre's conjecture was first proved by Bruno Harris [54], who
obtained a number of other results of a similar nature. Still working

mod € he showed that the following two exact sequences are short exact

and split:
e Vont1, 20 ™ e Wone1, 210 ™ e Wons1, o0 Vons1, 2k
T X, 1) ™ e Wop o) = 1 Wop o1 X -
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Eventually this leads to the conclusion that

70 = e Vontr, o) (mod ©),

a generalization of Serre's conjecture.

Recently these results have been re-examined by Friedlander
[45] using localization theory. Away from the prime 2 the Harris argu-
ment shows that Spn and R
that an,k and QV2n+1, ok

methods inspired by algebraic geometry Friedlander has shown that

on+1 have the same homotopy type, also

have the same homotopy type. Using

Xn,k and V2n+1, ok have the same homotopy type, away from the

prime 2, The Harris results also suggest other possibilities. For
example, is Xn,k a retract of W2n, ok and is V2n+1, ok 2 retract

of W2n+1, ok? in the same localized sense? It would also be interesting
to look at the triviality problem for complex and quaternionic Stiefel
manifolds from the local point of view.

A smooth manifold M is said to be parallelizable if the tangent
bundle T(M) is trivial. Sutherland [139] was the first to show that
On,k is parallelizable for k = 2, Other proofs of this have been given
by Handel [53] and Lam [94] provided k > 2 in the real case. As we have
seen in §12, it is easy to establish parallelizability in the stable sense.

If the manifold M is an H-space then T(M) is J-trivial, as shown
by Browder and Spanier [33]. For k = 2 it seems plausible to conjecture
that neither Vn,k n,k is an H-space when k < n - 1, also that
Xn,k is not an H-space when k < n. The case of Xn,n-l = Spn/Sp1
appears to present difficulty, but in all the other cases the conjecture can

nor W

be established fairly easily by cohomological methods (I am most grateful
to Dr. Hubbuck for information on this point),

The homotopy groups of Stiefel manifolds play a basic role in the
index theory of singular vector fields. To be precise, if M is oriented
and dim M = n then the index of a k-field X on M, with finitely many

singularities, is an element I(X) € 11n_1(Vn Reversing the orienta-

).
k
tion of M changes I(X) into -),I(X), where X is asin § etc. Thomas
[142] has surveyed the literature in this area to which Atiyah and Dupont

[10] and Dupont [35] have recently made major contributions. Incidentally
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both [10] and [87] contain some information about ﬂn-l(vn, ) when n=0
mod .

Stiefel manifolds are fundamental to the theory of immersions
[57], submersions, etc. These applications underline the importance
of studying, for any pair U, V of euclidean bundles over a space X,
the fibre bundle formed from morphisms u .= Vx (x € X), and parti-
cularly the subbundles formed by the monomorphisms and epimorphisms.
Many of the topics we have been studying can be generalized to these
'Stiefel bundles’; further details, with references to the literature, can
be found in the Oxford D. Phil. theses of M. C. Crabb and L. Woodward.

Problems (mainly taken from the literature)

1. Show that the manifold O* K of linearly independent k-frames is
H
homeomorphic to O | % A™, where m = ik(k - 1).
b4
2. Show that Om,k is contractible in 0m +n,k if and only if m=n.
3. Suppose that Sn-1 admits a (k - 1)-field, where 2k =n + 1.

Show (see [62]) that every field of tangent (k - 1)-planes can be spanned
by a field of tangent (k - 1)-frames if and only if Trn_l(Ok) =0,

4, The projective Stiefel manifold Vn k/Z2 is defined by identifying
each k-frame (vl, vy vk) with (-vl, . .,. , -vk). Investigate the co-

homology of this space (see [49]).
5. Show that Pn is S-neutral if and only if there exists an S-map

SPn,k - Pn+1, k+1
in dimension n.

k
’
which induces an isomorphism of mod 2 cohomology

6. In the function-space of maps f : Sk - Sn, where 1=k < n, let
S(n, k) denote the subspace of maps f such that

lox- iyl <klx-yll @ v es

for some K €I depending on f. Show (see [102]) that 8(n, k) is homeo-

morphic to the double mapping cylinder of the fibrations

n

v \' S

- -
n+1,k+1 n+1, k+2
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7. Show (see [70]) that the Hurewicz homomorphism

3(V (Vn, 2) (n odd, n = 5)

Ton- n, 2) - H2n- 3
has index 4 or 8 according as n =1 or 3 mod 4,

8. Calculate the index of the image of
Lt Ton- 3(Vn, 2) - T’2n-3(wn, 2)’

where n 1is odd and i denotes inclusion.

9. Consider the standard involution T of W
as fixed-point set. Show that if 6 € nr(W

which has X
n,k

for any r, then

2n, 2k

2n, 2k’ Xn,k)’

22k'1(9 + T,0)=0.

[Hint: the case k =1 follows from a result proved in [65]. ]
Deduce that if ¢ € 111.()(n k) is an element such that 7 ¢ =0

’

: : . k,

in ﬂr(WZn, 2k), where ! denotes the inclusion, then 4 ¢ = 0.

10. Let 1< ! < k=n. Show (see [138]) that W _, does not have
H

a cross-section over Wn ? unless k=n and I =n- 1. Also show
t4

that X does not have a cross-section over X ..
n, k n, 1
11, The number U(n,k) is defined to be the index of p*112n_1(Wn
’

ﬂ2n-1(wn, 1). Show that

(i) U(n, k) is a multiple of U(n, ?), for I =k;

(ii) U(n, k). U(m, k) is a multiple of U(m + n, k);

(iti) If U(m, k)=1 and m = 2k - 1 then U(m, k) = U(m+n, k).

X
in

12, With the notation of Problem 11, show that U(n, 3) is given by
the following table (see [128])

=(mod24) 3 4 5 6 7 8 9 10 11 12 13 14

U(n, 3) 2 6 24 4 12 3 8 12 6 2 24 12
n=(mod24) 15 16 17 18 19 20 21 22 23 24 25 26
U(n, 3) 4 3 24 4 6 6 8 12 12 1 24 12

13, The action of 0n on V is given by a map

n, k
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-’Vn Kk’

’

g:Onxvn,k

The principal fibration O_, | =" is classified by amap £: 8" =0 .

Show that the fibration Vn +1,k+1 -
homotopy type, if and only if

s" is trivial, in the sense of fibre

n-1
gfxX1)~p:8 xvn,k-’vn,k’

where p denotes the right projection.

14, Show that if 1 < k < n then neither of the fibrations

Wn,k-’Wn,l’ Xn,k-’xn 1

’

is trivial, in the sense of fibre homotopy type.

15. Show (see [78]) that the dk-fold suspension of the fundamental
class of O is a spherical class.
n,k
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